blender/intern/cycles/kernel/bvh/qbvh_traversal.h

549 lines
17 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is a template BVH traversal function, where various features can be
* enabled/disabled. This way we can compile optimized versions for each case
* without new features slowing things down.
*
* BVH_INSTANCING: object instancing
* BVH_HAIR: hair curve rendering
* BVH_HAIR_MINIMUM_WIDTH: hair curve rendering with minimum width
* BVH_MOTION: motion blur rendering
*
*/
#if BVH_FEATURE(BVH_HAIR)
# define NODE_INTERSECT qbvh_node_intersect
# define NODE_INTERSECT_ROBUST qbvh_node_intersect_robust
#else
# define NODE_INTERSECT qbvh_aligned_node_intersect
# define NODE_INTERSECT_ROBUST qbvh_aligned_node_intersect_robust
#endif
ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect,
const uint visibility
#if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH)
,uint *lcg_state,
float difl,
float extmax
#endif
)
{
/* TODO(sergey):
* - Test if pushing distance on the stack helps (for non shadow rays).
* - Separate version for shadow rays.
* - Likely and unlikely for if() statements.
* - Test restrict attribute for pointers.
*/
/* Traversal stack in CUDA thread-local memory. */
QBVHStackItem traversal_stack[BVH_QSTACK_SIZE];
traversal_stack[0].addr = ENTRYPOINT_SENTINEL;
traversal_stack[0].dist = -FLT_MAX;
/* Traversal variables in registers. */
int stack_ptr = 0;
int node_addr = kernel_data.bvh.root;
float node_dist = -FLT_MAX;
/* Ray parameters in registers. */
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
int object = OBJECT_NONE;
#if BVH_FEATURE(BVH_MOTION)
Transform ob_itfm;
#endif
#ifndef __KERNEL_SSE41__
if(!isfinite(P.x)) {
return false;
}
#endif
isect->t = ray->t;
isect->u = 0.0f;
isect->v = 0.0f;
isect->prim = PRIM_NONE;
isect->object = OBJECT_NONE;
BVH_DEBUG_INIT();
ssef tnear(0.0f), tfar(ray->t);
#if BVH_FEATURE(BVH_HAIR)
sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z));
#endif
sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
float3 P_idir = P*idir;
sse3f P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
sse3f org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
/* Offsets to select the side that becomes the lower or upper bound. */
#ifdef __KERNEL_SSE__
int near_x = 0, near_y = 2, near_z = 4;
int far_x = 1, far_y = 3, far_z = 5;
const size_t mask = movemask(ssef(idir.m128));
const int mask_x = mask & 1;
const int mask_y = (mask & 2) >> 1;
const int mask_z = (mask & 4) >> 2;
near_x += mask_x; far_x -= mask_x;
near_y += mask_y; far_y -= mask_y;
near_z += mask_z; far_z -= mask_z;
#else
int near_x, near_y, near_z;
int far_x, far_y, far_z;
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
#endif
IsectPrecalc isect_precalc;
triangle_intersect_precalc(dir, &isect_precalc);
/* Traversal loop. */
do {
do {
/* Traverse internal nodes. */
while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
if(UNLIKELY(node_dist > isect->t)
#ifdef __VISIBILITY_FLAG__
|| (__float_as_uint(inodes.x) & visibility) == 0)
#endif
{
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
node_dist = traversal_stack[stack_ptr].dist;
--stack_ptr;
continue;
}
int child_mask;
ssef dist;
BVH_DEBUG_NEXT_STEP();
#if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH)
if(difl != 0.0f) {
/* NOTE: We extend all the child BB instead of fetching
* and checking visibility flags for each of the,
*
* Need to test if doing opposite would be any faster.
*/
child_mask = NODE_INTERSECT_ROBUST(kg,
tnear,
tfar,
# ifdef __KERNEL_AVX2__
P_idir4,
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4,
# endif
# if BVH_FEATURE(BVH_HAIR)
dir4,
# endif
idir4,
near_x, near_y, near_z,
far_x, far_y, far_z,
node_addr,
difl,
&dist);
}
else
#endif /* BVH_HAIR_MINIMUM_WIDTH */
{
child_mask = NODE_INTERSECT(kg,
tnear,
tfar,
#ifdef __KERNEL_AVX2__
P_idir4,
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4,
#endif
#if BVH_FEATURE(BVH_HAIR)
dir4,
#endif
idir4,
near_x, near_y, near_z,
far_x, far_y, far_z,
node_addr,
&dist);
}
if(child_mask != 0) {
float4 cnodes;
/* TODO(sergey): Investigate whether moving cnodes upwards
* gives a speedup (will be different cache pattern but will
* avoid extra check here),
*/
#if BVH_FEATURE(BVH_HAIR)
if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+13);
}
else
#endif
{
cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+7);
}
/* One child is hit, continue with that child. */
int r = __bscf(child_mask);
float d0 = ((float*)&dist)[r];
if(child_mask == 0) {
node_addr = __float_as_int(cnodes[r]);
node_dist = d0;
continue;
}
/* Two children are hit, push far child, and continue with
* closer child.
*/
int c0 = __float_as_int(cnodes[r]);
r = __bscf(child_mask);
int c1 = __float_as_int(cnodes[r]);
float d1 = ((float*)&dist)[r];
if(child_mask == 0) {
if(d1 < d0) {
node_addr = c1;
node_dist = d1;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c0;
traversal_stack[stack_ptr].dist = d0;
continue;
}
else {
node_addr = c0;
node_dist = d0;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c1;
traversal_stack[stack_ptr].dist = d1;
continue;
}
}
/* Here starts the slow path for 3 or 4 hit children. We push
* all nodes onto the stack to sort them there.
*/
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c1;
traversal_stack[stack_ptr].dist = d1;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c0;
traversal_stack[stack_ptr].dist = d0;
/* Three children are hit, push all onto stack and sort 3
* stack items, continue with closest child.
*/
r = __bscf(child_mask);
int c2 = __float_as_int(cnodes[r]);
float d2 = ((float*)&dist)[r];
if(child_mask == 0) {
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c2;
traversal_stack[stack_ptr].dist = d2;
qbvh_stack_sort(&traversal_stack[stack_ptr],
&traversal_stack[stack_ptr - 1],
&traversal_stack[stack_ptr - 2]);
node_addr = traversal_stack[stack_ptr].addr;
node_dist = traversal_stack[stack_ptr].dist;
--stack_ptr;
continue;
}
/* Four children are hit, push all onto stack and sort 4
* stack items, continue with closest child.
*/
r = __bscf(child_mask);
int c3 = __float_as_int(cnodes[r]);
float d3 = ((float*)&dist)[r];
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c3;
traversal_stack[stack_ptr].dist = d3;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c2;
traversal_stack[stack_ptr].dist = d2;
qbvh_stack_sort(&traversal_stack[stack_ptr],
&traversal_stack[stack_ptr - 1],
&traversal_stack[stack_ptr - 2],
&traversal_stack[stack_ptr - 3]);
}
node_addr = traversal_stack[stack_ptr].addr;
node_dist = traversal_stack[stack_ptr].dist;
--stack_ptr;
}
/* If node is leaf, fetch triangle list. */
if(node_addr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1));
#ifdef __VISIBILITY_FLAG__
if(UNLIKELY((node_dist > isect->t) ||
((__float_as_uint(leaf.z) & visibility) == 0)))
#else
if(UNLIKELY((node_dist > isect->t)))
#endif
{
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
node_dist = traversal_stack[stack_ptr].dist;
--stack_ptr;
continue;
}
int prim_addr = __float_as_int(leaf.x);
#if BVH_FEATURE(BVH_INSTANCING)
if(prim_addr >= 0) {
#endif
int prim_addr2 = __float_as_int(leaf.y);
const uint type = __float_as_int(leaf.w);
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
node_dist = traversal_stack[stack_ptr].dist;
--stack_ptr;
/* Primitive intersection. */
switch(type & PRIMITIVE_ALL) {
case PRIMITIVE_TRIANGLE: {
for(; prim_addr < prim_addr2; prim_addr++) {
BVH_DEBUG_NEXT_STEP();
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
if(triangle_intersect(kg,
&isect_precalc,
isect,
P,
visibility,
object,
prim_addr)) {
tfar = ssef(isect->t);
/* Shadow ray early termination. */
if(visibility == PATH_RAY_SHADOW_OPAQUE) {
return true;
}
}
}
break;
}
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
for(; prim_addr < prim_addr2; prim_addr++) {
BVH_DEBUG_NEXT_STEP();
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
if(motion_triangle_intersect(kg,
isect,
P,
dir,
ray->time,
visibility,
object,
prim_addr)) {
tfar = ssef(isect->t);
/* Shadow ray early termination. */
if(visibility == PATH_RAY_SHADOW_OPAQUE) {
return true;
}
}
}
break;
}
#endif /* BVH_FEATURE(BVH_MOTION) */
#if BVH_FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
for(; prim_addr < prim_addr2; prim_addr++) {
BVH_DEBUG_NEXT_STEP();
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
bool hit;
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
hit = bvh_cardinal_curve_intersect(kg,
isect,
P,
dir,
visibility,
object,
prim_addr,
ray->time,
type,
lcg_state,
difl,
extmax);
}
else {
hit = bvh_curve_intersect(kg,
isect,
P,
dir,
visibility,
object,
prim_addr,
ray->time,
type,
lcg_state,
difl,
extmax);
}
if(hit) {
tfar = ssef(isect->t);
/* Shadow ray early termination. */
if(visibility == PATH_RAY_SHADOW_OPAQUE) {
return true;
}
}
}
break;
}
#endif /* BVH_FEATURE(BVH_HAIR) */
}
}
#if BVH_FEATURE(BVH_INSTANCING)
else {
/* Instance push. */
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
# if BVH_FEATURE(BVH_MOTION)
qbvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &node_dist, &ob_itfm);
# else
qbvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t, &node_dist);
# endif
#ifdef __KERNEL_SSE__
near_x = 0; near_y = 2; near_z = 4;
far_x = 1; far_y = 3; far_z = 5;
const size_t mask = movemask(ssef(idir.m128));
const int mask_x = mask & 1;
const int mask_y = (mask & 2) >> 1;
const int mask_z = (mask & 4) >> 2;
near_x += mask_x; far_x -= mask_x;
near_y += mask_y; far_y -= mask_y;
near_z += mask_z; far_z -= mask_z;
#else
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
#endif
tfar = ssef(isect->t);
# if BVH_FEATURE(BVH_HAIR)
dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
# endif
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
# ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
triangle_intersect_precalc(dir, &isect_precalc);
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
traversal_stack[stack_ptr].dist = -FLT_MAX;
node_addr = kernel_tex_fetch(__object_node, object);
BVH_DEBUG_NEXT_INSTANCE();
}
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(node_addr != ENTRYPOINT_SENTINEL);
#if BVH_FEATURE(BVH_INSTANCING)
if(stack_ptr >= 0) {
kernel_assert(object != OBJECT_NONE);
/* Instance pop. */
# if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
# else
bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t);
# endif
#ifdef __KERNEL_SSE__
near_x = 0; near_y = 2; near_z = 4;
far_x = 1; far_y = 3; far_z = 5;
const size_t mask = movemask(ssef(idir.m128));
const int mask_x = mask & 1;
const int mask_y = (mask & 2) >> 1;
const int mask_z = (mask & 4) >> 2;
near_x += mask_x; far_x -= mask_x;
near_y += mask_y; far_y -= mask_y;
near_z += mask_z; far_z -= mask_z;
#else
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
#endif
tfar = ssef(isect->t);
# if BVH_FEATURE(BVH_HAIR)
dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
# endif
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
# ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
triangle_intersect_precalc(dir, &isect_precalc);
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr].addr;
node_dist = traversal_stack[stack_ptr].dist;
--stack_ptr;
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(node_addr != ENTRYPOINT_SENTINEL);
return (isect->prim != PRIM_NONE);
}
#undef NODE_INTERSECT
#undef NODE_INTERSECT_ROBUST