2009-09-24 21:22:24 +00:00
|
|
|
// Copyright (C) 2007 Ruben Smits <ruben dot smits at mech dot kuleuven dot be>
|
|
|
|
|
|
|
|
// Version: 1.0
|
|
|
|
// Author: Ruben Smits <ruben dot smits at mech dot kuleuven dot be>
|
|
|
|
// Maintainer: Ruben Smits <ruben dot smits at mech dot kuleuven dot be>
|
|
|
|
// URL: http://www.orocos.org/kdl
|
|
|
|
|
|
|
|
// This library is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
|
|
// License as published by the Free Software Foundation; either
|
|
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
// Lesser General Public License for more details.
|
|
|
|
|
|
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
|
|
// License along with this library; if not, write to the Free Software
|
|
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
|
|
|
|
|
|
|
|
//Based on the svd of the KDL-0.2 library by Erwin Aertbelien
|
|
|
|
#ifndef SVD_EIGEN_HH_HPP
|
|
|
|
#define SVD_EIGEN_HH_HPP
|
|
|
|
|
|
|
|
|
2011-10-23 17:52:20 +00:00
|
|
|
#include <Eigen/Core>
|
2009-09-24 21:22:24 +00:00
|
|
|
#include <algorithm>
|
|
|
|
|
|
|
|
namespace KDL
|
|
|
|
{
|
|
|
|
template<typename Scalar> inline Scalar PYTHAG(Scalar a,Scalar b) {
|
|
|
|
double at,bt,ct;
|
|
|
|
at = fabs(a);
|
|
|
|
bt = fabs(b);
|
|
|
|
if (at > bt ) {
|
|
|
|
ct=bt/at;
|
|
|
|
return Scalar(at*sqrt(1.0+ct*ct));
|
|
|
|
} else {
|
|
|
|
if (bt==0)
|
|
|
|
return Scalar(0.0);
|
|
|
|
else {
|
|
|
|
ct=at/bt;
|
|
|
|
return Scalar(bt*sqrt(1.0+ct*ct));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Scalar> inline Scalar SIGN(Scalar a,Scalar b) {
|
|
|
|
return ((b) >= Scalar(0.0) ? fabs(a) : -fabs(a));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* svd calculation of boost ublas matrices
|
|
|
|
*
|
|
|
|
* @param A matrix<double>(mxn)
|
|
|
|
* @param U matrix<double>(mxn)
|
|
|
|
* @param S vector<double> n
|
|
|
|
* @param V matrix<double>(nxn)
|
|
|
|
* @param tmp vector<double> n
|
|
|
|
* @param maxiter defaults to 150
|
|
|
|
*
|
|
|
|
* @return -2 if maxiter exceeded, 0 otherwise
|
|
|
|
*/
|
|
|
|
template<typename MatrixA, typename MatrixUV, typename VectorS>
|
|
|
|
int svd_eigen_HH(
|
|
|
|
const Eigen::MatrixBase<MatrixA>& A,
|
|
|
|
Eigen::MatrixBase<MatrixUV>& U,
|
|
|
|
Eigen::MatrixBase<VectorS>& S,
|
|
|
|
Eigen::MatrixBase<MatrixUV>& V,
|
|
|
|
Eigen::MatrixBase<VectorS>& tmp,
|
|
|
|
int maxiter=150)
|
|
|
|
{
|
|
|
|
//get the rows/columns of the matrix
|
|
|
|
const int rows = A.rows();
|
|
|
|
const int cols = A.cols();
|
|
|
|
|
|
|
|
U = A;
|
|
|
|
|
|
|
|
int i(-1),its(-1),j(-1),jj(-1),k(-1),nm=0;
|
|
|
|
int ppi(0);
|
|
|
|
bool flag;
|
|
|
|
e_scalar maxarg1,maxarg2,anorm(0),c(0),f(0),h(0),s(0),scale(0),x(0),y(0),z(0),g(0);
|
|
|
|
|
|
|
|
g=scale=anorm=e_scalar(0.0);
|
|
|
|
|
|
|
|
/* Householder reduction to bidiagonal form. */
|
|
|
|
for (i=0;i<cols;i++) {
|
|
|
|
ppi=i+1;
|
|
|
|
tmp(i)=scale*g;
|
|
|
|
g=s=scale=e_scalar(0.0);
|
|
|
|
if (i<rows) {
|
|
|
|
// compute the sum of the i-th column, starting from the i-th row
|
|
|
|
for (k=i;k<rows;k++) scale += fabs(U(k,i));
|
|
|
|
if (scale!=0) {
|
|
|
|
// multiply the i-th column by 1.0/scale, start from the i-th element
|
|
|
|
// sum of squares of column i, start from the i-th element
|
|
|
|
for (k=i;k<rows;k++) {
|
|
|
|
U(k,i) /= scale;
|
|
|
|
s += U(k,i)*U(k,i);
|
|
|
|
}
|
|
|
|
f=U(i,i); // f is the diag elem
|
|
|
|
g = -SIGN(e_scalar(sqrt(s)),f);
|
|
|
|
h=f*g-s;
|
|
|
|
U(i,i)=f-g;
|
|
|
|
for (j=ppi;j<cols;j++) {
|
|
|
|
// dot product of columns i and j, starting from the i-th row
|
|
|
|
for (s=0.0,k=i;k<rows;k++) s += U(k,i)*U(k,j);
|
|
|
|
f=s/h;
|
|
|
|
// copy the scaled i-th column into the j-th column
|
|
|
|
for (k=i;k<rows;k++) U(k,j) += f*U(k,i);
|
|
|
|
}
|
|
|
|
for (k=i;k<rows;k++) U(k,i) *= scale;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// save singular value
|
|
|
|
S(i)=scale*g;
|
|
|
|
g=s=scale=e_scalar(0.0);
|
|
|
|
if ((i <rows) && (i+1 != cols)) {
|
|
|
|
// sum of row i, start from columns i+1
|
|
|
|
for (k=ppi;k<cols;k++) scale += fabs(U(i,k));
|
|
|
|
if (scale!=0) {
|
|
|
|
for (k=ppi;k<cols;k++) {
|
|
|
|
U(i,k) /= scale;
|
|
|
|
s += U(i,k)*U(i,k);
|
|
|
|
}
|
|
|
|
f=U(i,ppi);
|
|
|
|
g = -SIGN(e_scalar(sqrt(s)),f);
|
|
|
|
h=f*g-s;
|
|
|
|
U(i,ppi)=f-g;
|
|
|
|
for (k=ppi;k<cols;k++) tmp(k)=U(i,k)/h;
|
|
|
|
for (j=ppi;j<rows;j++) {
|
|
|
|
for (s=0.0,k=ppi;k<cols;k++) s += U(j,k)*U(i,k);
|
|
|
|
for (k=ppi;k<cols;k++) U(j,k) += s*tmp(k);
|
|
|
|
}
|
|
|
|
for (k=ppi;k<cols;k++) U(i,k) *= scale;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
maxarg1=anorm;
|
|
|
|
maxarg2=(fabs(S(i))+fabs(tmp(i)));
|
|
|
|
anorm = maxarg1 > maxarg2 ? maxarg1 : maxarg2;
|
|
|
|
}
|
|
|
|
/* Accumulation of right-hand transformations. */
|
|
|
|
for (i=cols-1;i>=0;i--) {
|
|
|
|
if (i<cols-1) {
|
|
|
|
if (g) {
|
|
|
|
for (j=ppi;j<cols;j++) V(j,i)=(U(i,j)/U(i,ppi))/g;
|
|
|
|
for (j=ppi;j<cols;j++) {
|
|
|
|
for (s=0.0,k=ppi;k<cols;k++) s += U(i,k)*V(k,j);
|
|
|
|
for (k=ppi;k<cols;k++) V(k,j) += s*V(k,i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (j=ppi;j<cols;j++) V(i,j)=V(j,i)=0.0;
|
|
|
|
}
|
|
|
|
V(i,i)=1.0;
|
|
|
|
g=tmp(i);
|
|
|
|
ppi=i;
|
|
|
|
}
|
|
|
|
/* Accumulation of left-hand transformations. */
|
|
|
|
for (i=cols-1<rows-1 ? cols-1:rows-1;i>=0;i--) {
|
|
|
|
ppi=i+1;
|
|
|
|
g=S(i);
|
|
|
|
for (j=ppi;j<cols;j++) U(i,j)=0.0;
|
|
|
|
if (g) {
|
|
|
|
g=e_scalar(1.0)/g;
|
|
|
|
for (j=ppi;j<cols;j++) {
|
|
|
|
for (s=0.0,k=ppi;k<rows;k++) s += U(k,i)*U(k,j);
|
|
|
|
f=(s/U(i,i))*g;
|
|
|
|
for (k=i;k<rows;k++) U(k,j) += f*U(k,i);
|
|
|
|
}
|
|
|
|
for (j=i;j<rows;j++) U(j,i) *= g;
|
|
|
|
} else {
|
|
|
|
for (j=i;j<rows;j++) U(j,i)=0.0;
|
|
|
|
}
|
|
|
|
++U(i,i);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Diagonalization of the bidiagonal form. */
|
|
|
|
for (k=cols-1;k>=0;k--) { /* Loop over singular values. */
|
|
|
|
for (its=1;its<=maxiter;its++) { /* Loop over allowed iterations. */
|
|
|
|
flag=true;
|
|
|
|
for (ppi=k;ppi>=0;ppi--) { /* Test for splitting. */
|
|
|
|
nm=ppi-1; /* Note that tmp(1) is always zero. */
|
|
|
|
if ((fabs(tmp(ppi))+anorm) == anorm) {
|
|
|
|
flag=false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if ((fabs(S(nm)+anorm) == anorm)) break;
|
|
|
|
}
|
|
|
|
if (flag) {
|
|
|
|
c=e_scalar(0.0); /* Cancellation of tmp(l), if l>1: */
|
|
|
|
s=e_scalar(1.);
|
|
|
|
for (i=ppi;i<=k;i++) {
|
|
|
|
f=s*tmp(i);
|
|
|
|
tmp(i)=c*tmp(i);
|
|
|
|
if ((fabs(f)+anorm) == anorm) break;
|
|
|
|
g=S(i);
|
|
|
|
h=PYTHAG(f,g);
|
|
|
|
S(i)=h;
|
|
|
|
h=e_scalar(1.0)/h;
|
|
|
|
c=g*h;
|
|
|
|
s=(-f*h);
|
|
|
|
for (j=0;j<rows;j++) {
|
|
|
|
y=U(j,nm);
|
|
|
|
z=U(j,i);
|
|
|
|
U(j,nm)=y*c+z*s;
|
|
|
|
U(j,i)=z*c-y*s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
z=S(k);
|
|
|
|
|
|
|
|
if (ppi == k) { /* Convergence. */
|
|
|
|
if (z < e_scalar(0.0)) { /* Singular value is made nonnegative. */
|
|
|
|
S(k) = -z;
|
|
|
|
for (j=0;j<cols;j++) V(j,k)=-V(j,k);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
x=S(ppi); /* Shift from bottom 2-by-2 minor: */
|
|
|
|
nm=k-1;
|
|
|
|
y=S(nm);
|
|
|
|
g=tmp(nm);
|
|
|
|
h=tmp(k);
|
|
|
|
f=((y-z)*(y+z)+(g-h)*(g+h))/(e_scalar(2.0)*h*y);
|
|
|
|
|
|
|
|
g=PYTHAG(f,e_scalar(1.0));
|
|
|
|
f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
|
|
|
|
|
|
|
|
/* Next QR transformation: */
|
|
|
|
c=s=1.0;
|
|
|
|
for (j=ppi;j<=nm;j++) {
|
|
|
|
i=j+1;
|
|
|
|
g=tmp(i);
|
|
|
|
y=S(i);
|
|
|
|
h=s*g;
|
|
|
|
g=c*g;
|
|
|
|
z=PYTHAG(f,h);
|
|
|
|
tmp(j)=z;
|
|
|
|
c=f/z;
|
|
|
|
s=h/z;
|
|
|
|
f=x*c+g*s;
|
|
|
|
g=g*c-x*s;
|
|
|
|
h=y*s;
|
|
|
|
y=y*c;
|
|
|
|
for (jj=0;jj<cols;jj++) {
|
|
|
|
x=V(jj,j);
|
|
|
|
z=V(jj,i);
|
|
|
|
V(jj,j)=x*c+z*s;
|
|
|
|
V(jj,i)=z*c-x*s;
|
|
|
|
}
|
|
|
|
z=PYTHAG(f,h);
|
|
|
|
S(j)=z;
|
|
|
|
if (z) {
|
|
|
|
z=e_scalar(1.0)/z;
|
|
|
|
c=f*z;
|
|
|
|
s=h*z;
|
|
|
|
}
|
|
|
|
f=(c*g)+(s*y);
|
|
|
|
x=(c*y)-(s*g);
|
|
|
|
for (jj=0;jj<rows;jj++) {
|
|
|
|
y=U(jj,j);
|
|
|
|
z=U(jj,i);
|
|
|
|
U(jj,j)=y*c+z*s;
|
|
|
|
U(jj,i)=z*c-y*s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
tmp(ppi)=0.0;
|
|
|
|
tmp(k)=f;
|
|
|
|
S(k)=x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//Sort eigen values:
|
|
|
|
for (i=0; i<cols; i++){
|
|
|
|
|
|
|
|
double S_max = S(i);
|
|
|
|
int i_max = i;
|
|
|
|
for (j=i+1; j<cols; j++){
|
|
|
|
double Sj = S(j);
|
|
|
|
if (Sj > S_max){
|
|
|
|
S_max = Sj;
|
|
|
|
i_max = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (i_max != i){
|
|
|
|
/* swap eigenvalues */
|
|
|
|
e_scalar tmp = S(i);
|
|
|
|
S(i)=S(i_max);
|
|
|
|
S(i_max)=tmp;
|
|
|
|
|
|
|
|
/* swap eigenvectors */
|
|
|
|
U.col(i).swap(U.col(i_max));
|
|
|
|
V.col(i).swap(V.col(i_max));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (its == maxiter)
|
|
|
|
return (-2);
|
|
|
|
else
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
#endif
|