blender/source/gameengine/BlenderRoutines/KX_BlenderRenderTools.cpp

467 lines
14 KiB
C++
Raw Normal View History

2002-10-12 11:37:38 +00:00
/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
2002-10-12 11:37:38 +00:00
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
2002-10-12 11:37:38 +00:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
2002-10-12 11:37:38 +00:00
*/
Merge of apricot branch game engine changes into trunk, excluding GLSL. GLEW ==== Added the GLEW opengl extension library into extern/, always compiled into Blender now. This is much nicer than doing this kind of extension management manually, and will be used in the game engine, for GLSL, and other opengl extensions. * According to the GLEW website it works on Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris. There might still be platform specific issues due to this commit, so let me know and I'll look into it. * This means also that all extensions will now always be compiled in, regardless of the glext.h on the platform where compilation happens. Game Engine =========== Refactoring of the use of opengl extensions and other drawing code in the game engine, and cleaning up some hacks related to GLSL integration. These changes will be merged into trunk too after this. The game engine graphics demos & apricot level survived my tests, but this could use some good testing of course. For users: please test with the options "Generate Display Lists" and "Vertex Arrays" enabled, these should be the fastest and are supposed to be "unreliable", but if that's the case that's probably due to bugs that can be fixed. * The game engine now also uses GLEW for extensions, replacing the custom opengl extensions code that was there. Removes a lot of #ifdef's, but the runtime checks stay of course. * Removed the WITHOUT_GLEXT environment variable. This was added to work around a specific bug and only disabled multitexturing anyway. It might also have caused a slowdown since it was retrieving the environment variable for every vertex in immediate mode (bug #13680). * Refactored the code to allow drawing skinned meshes with vertex arrays too, removing some specific immediate mode drawing functions for this that only did extra normal calculation. Now it always splits vertices of flat faces instead. * Refactored normal recalculation with some minor optimizations, required for the above change. * Removed some outdated code behind the __NLA_OLDDEFORM #ifdef. * Fixed various bugs in setting of multitexture coordinates and vertex attributes for vertex arrays. These were not being enabled/disabled correct according to the opengl spec, leading to crashes. Also tangent attributes used an immediate mode call for vertex arrays, which can't work. * Fixed use of uninitialized variable in RAS_TexVert. * Exporting skinned meshes was doing O(n^2) lookups for vertices and deform weights, now uses same trick as regular meshes.
2008-06-17 10:27:34 +00:00
#include "GL/glew.h"
2002-10-12 11:37:38 +00:00
#include "DNA_scene_types.h"
2002-10-12 11:37:38 +00:00
#include "RAS_IRenderTools.h"
#include "RAS_IRasterizer.h"
#include "RAS_LightObject.h"
#include "RAS_ICanvas.h"
#include "RAS_GLExtensionManager.h"
2002-10-12 11:37:38 +00:00
#include "KX_GameObject.h"
#include "KX_PolygonMaterial.h"
#include "KX_BlenderMaterial.h"
#include "KX_RayCast.h"
#include "KX_IPhysicsController.h"
#include "PHY_IPhysicsEnvironment.h"
2002-10-12 11:37:38 +00:00
#include "STR_String.h"
#include "GPU_draw.h"
#include "KX_BlenderGL.h" // for text printing
#include "KX_BlenderRenderTools.h"
unsigned int KX_BlenderRenderTools::m_numgllights;
2002-10-12 11:37:38 +00:00
KX_BlenderRenderTools::KX_BlenderRenderTools()
{
glGetIntegerv(GL_MAX_LIGHTS, (GLint*) &m_numgllights);
if (m_numgllights < 8)
m_numgllights = 8;
2002-10-12 11:37:38 +00:00
}
KX_BlenderRenderTools::~KX_BlenderRenderTools()
{
}
2002-10-12 11:37:38 +00:00
void KX_BlenderRenderTools::BeginFrame(RAS_IRasterizer* rasty)
2002-10-12 11:37:38 +00:00
{
m_clientobject = NULL;
m_lastlightlayer = -1;
m_lastlighting = false;
m_lastauxinfo = NULL;
DisableOpenGLLights();
}
2002-10-12 11:37:38 +00:00
void KX_BlenderRenderTools::EndFrame(RAS_IRasterizer* rasty)
{
}
/* ProcessLighting performs lighting on objects. the layer is a bitfield that
* contains layer information. There are 20 'official' layers in blender. A
* light is applied on an object only when they are in the same layer. OpenGL
* has a maximum of 8 lights (simultaneous), so 20 * 8 lights are possible in
* a scene. */
void KX_BlenderRenderTools::ProcessLighting(RAS_IRasterizer *rasty, bool uselights, const MT_Transform& viewmat)
{
bool enable = false;
int layer= -1;
/* find the layer */
if(uselights) {
if(m_clientobject)
layer = static_cast<KX_GameObject*>(m_clientobject)->GetLayer();
}
/* avoid state switching */
if(m_lastlightlayer == layer && m_lastauxinfo == m_auxilaryClientInfo)
return;
m_lastlightlayer = layer;
m_lastauxinfo = m_auxilaryClientInfo;
/* enable/disable lights as needed */
if(layer >= 0)
enable = applyLights(layer, viewmat);
if(enable)
EnableOpenGLLights(rasty);
else
DisableOpenGLLights();
2002-10-12 11:37:38 +00:00
}
void KX_BlenderRenderTools::EnableOpenGLLights(RAS_IRasterizer *rasty)
{
if(m_lastlighting == true)
return;
2002-10-12 11:37:38 +00:00
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, (rasty->GetCameraOrtho())? GL_FALSE: GL_TRUE);
if (GLEW_EXT_separate_specular_color || GLEW_VERSION_1_2)
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
m_lastlighting = true;
}
void KX_BlenderRenderTools::DisableOpenGLLights()
2002-10-12 11:37:38 +00:00
{
if(m_lastlighting == false)
return;
2002-10-12 11:37:38 +00:00
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
2002-10-12 11:37:38 +00:00
m_lastlighting = false;
2002-10-12 11:37:38 +00:00
}
void KX_BlenderRenderTools::SetClientObject(RAS_IRasterizer *rasty, void* obj)
{
if (m_clientobject != obj)
{
bool ccw = (obj == NULL || !((KX_GameObject*)obj)->IsNegativeScaling());
rasty->SetFrontFace(ccw);
m_clientobject = obj;
}
}
BGE patch: KX_GameObject::rayCast() improvements to have X-Ray option, return true face normal and hit polygon information. rayCast(to,from,dist,prop,face,xray,poly): The face paremeter determines the orientation of the normal: 0 or omitted => hit normal is always oriented towards the ray origin (as if you casted the ray from outside) 1 => hit normal is the real face normal (only for mesh object, otherwise face has no effect) The ray has X-Ray capability if xray parameter is 1, otherwise the first object hit (other than self object) stops the ray. The prop and xray parameters interact as follow: prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray. prop off, xray on : idem. prop on, xray off: return closest hit if it matches prop, no hit otherwise. prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray. if poly is 0 or omitted, returns a 3-tuple with object reference, hit point and hit normal or (None,None,None) if no hit. if poly is 1, returns a 4-tuple with in addition a KX_PolyProxy as 4th element. The KX_PolyProxy object holds information on the polygon hit by the ray: the index of the vertex forming the poylgon, material, etc. Attributes (read-only): matname: The name of polygon material, empty if no material. material: The material of the polygon texture: The texture name of the polygon. matid: The material index of the polygon, use this to retrieve vertex proxy from mesh proxy v1: vertex index of the first vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v2: vertex index of the second vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v3: vertex index of the third vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v4: vertex index of the fourth vertex of the polygon, 0 if polygon has only 3 vertex use this to retrieve vertex proxy from mesh proxy visible: visible state of the polygon: 1=visible, 0=invisible collide: collide state of the polygon: 1=receives collision, 0=collision free. Methods: getMaterialName(): Returns the polygon material name with MA prefix getMaterial(): Returns the polygon material getTextureName(): Returns the polygon texture name getMaterialIndex(): Returns the material bucket index of the polygon. getNumVertex(): Returns the number of vertex of the polygon. isVisible(): Returns whether the polygon is visible or not isCollider(): Returns whether the polygon is receives collision or not getVertexIndex(vertex): Returns the mesh vertex index of a polygon vertex getMesh(): Returns a mesh proxy New methods of KX_MeshProxy have been implemented to retrieve KX_PolyProxy objects: getNumPolygons(): Returns the number of polygon in the mesh. getPolygon(index): Gets the specified polygon from the mesh. More details in PyDoc.
2008-08-27 19:34:19 +00:00
bool KX_BlenderRenderTools::RayHit(KX_ClientObjectInfo* client, KX_RayCast* result, void * const data)
{
double* const oglmatrix = (double* const) data;
BGE patch: KX_GameObject::rayCast() improvements to have X-Ray option, return true face normal and hit polygon information. rayCast(to,from,dist,prop,face,xray,poly): The face paremeter determines the orientation of the normal: 0 or omitted => hit normal is always oriented towards the ray origin (as if you casted the ray from outside) 1 => hit normal is the real face normal (only for mesh object, otherwise face has no effect) The ray has X-Ray capability if xray parameter is 1, otherwise the first object hit (other than self object) stops the ray. The prop and xray parameters interact as follow: prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray. prop off, xray on : idem. prop on, xray off: return closest hit if it matches prop, no hit otherwise. prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray. if poly is 0 or omitted, returns a 3-tuple with object reference, hit point and hit normal or (None,None,None) if no hit. if poly is 1, returns a 4-tuple with in addition a KX_PolyProxy as 4th element. The KX_PolyProxy object holds information on the polygon hit by the ray: the index of the vertex forming the poylgon, material, etc. Attributes (read-only): matname: The name of polygon material, empty if no material. material: The material of the polygon texture: The texture name of the polygon. matid: The material index of the polygon, use this to retrieve vertex proxy from mesh proxy v1: vertex index of the first vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v2: vertex index of the second vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v3: vertex index of the third vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v4: vertex index of the fourth vertex of the polygon, 0 if polygon has only 3 vertex use this to retrieve vertex proxy from mesh proxy visible: visible state of the polygon: 1=visible, 0=invisible collide: collide state of the polygon: 1=receives collision, 0=collision free. Methods: getMaterialName(): Returns the polygon material name with MA prefix getMaterial(): Returns the polygon material getTextureName(): Returns the polygon texture name getMaterialIndex(): Returns the material bucket index of the polygon. getNumVertex(): Returns the number of vertex of the polygon. isVisible(): Returns whether the polygon is visible or not isCollider(): Returns whether the polygon is receives collision or not getVertexIndex(vertex): Returns the mesh vertex index of a polygon vertex getMesh(): Returns a mesh proxy New methods of KX_MeshProxy have been implemented to retrieve KX_PolyProxy objects: getNumPolygons(): Returns the number of polygon in the mesh. getPolygon(index): Gets the specified polygon from the mesh. More details in PyDoc.
2008-08-27 19:34:19 +00:00
MT_Point3 resultpoint(result->m_hitPoint);
MT_Vector3 resultnormal(result->m_hitNormal);
MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]);
MT_Vector3 dir = -(left.cross(resultnormal)).safe_normalized();
left = (dir.cross(resultnormal)).safe_normalized();
// for the up vector, we take the 'resultnormal' returned by the physics
2002-10-12 11:37:38 +00:00
double maat[16]={
left[0], left[1], left[2], 0,
dir[0], dir[1], dir[2], 0,
resultnormal[0],resultnormal[1],resultnormal[2], 0,
0, 0, 0, 1};
glTranslated(resultpoint[0],resultpoint[1],resultpoint[2]);
//glMultMatrixd(oglmatrix);
glMultMatrixd(maat);
return true;
}
2002-10-12 11:37:38 +00:00
void KX_BlenderRenderTools::applyTransform(RAS_IRasterizer* rasty,double* oglmatrix,int objectdrawmode )
{
/* FIXME:
blender: intern/moto/include/MT_Vector3.inl:42: MT_Vector3 operator/(const
MT_Vector3&, double): Assertion `!MT_fuzzyZero(s)' failed.
Program received signal SIGABRT, Aborted.
[Switching to Thread 16384 (LWP 1519)]
0x40477571 in kill () from /lib/libc.so.6
(gdb) bt
#7 0x08334368 in MT_Vector3::normalized() const ()
#8 0x0833e6ec in KX_BlenderRenderTools::applyTransform(RAS_IRasterizer*, double*, int) ()
*/
2002-10-12 11:37:38 +00:00
if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED ||
objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED)
{
// rotate the billboard/halo
//page 360/361 3D Game Engine Design, David Eberly for a discussion
// on screen aligned and axis aligned billboards
// assumed is that the preprocessor transformed all billboard polygons
// so that their normal points into the positive x direction (1.0 , 0.0 , 0.0)
// when new parenting for objects is done, this rotation
// will be moved into the object
MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]);
MT_Point3 campos = rasty->GetCameraPosition();
MT_Vector3 dir = (campos - objpos).safe_normalized();
MT_Vector3 up(0,0,1.0);
KX_GameObject* gameobj = (KX_GameObject*)m_clientobject;
2002-10-12 11:37:38 +00:00
// get scaling of halo object
MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale();
bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned
if (screenaligned)
{
up = (up - up.dot(dir) * dir).safe_normalized();
} else
{
dir = (dir - up.dot(dir)*up).safe_normalized();
}
MT_Vector3 left = dir.normalized();
dir = (left.cross(up)).normalized();
// we have calculated the row vectors, now we keep
// local scaling into account:
left *= size[0];
dir *= size[1];
up *= size[2];
double maat[16]={
left[0], left[1],left[2], 0,
dir[0], dir[1],dir[2],0,
up[0],up[1],up[2],0,
0,0,0,1};
glTranslated(objpos[0],objpos[1],objpos[2]);
glMultMatrixd(maat);
} else
{
if (objectdrawmode & RAS_IPolyMaterial::SHADOW)
{
// shadow must be cast to the ground, physics system needed here!
MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]);
KX_GameObject *gameobj = (KX_GameObject*)m_clientobject;
2002-10-12 11:37:38 +00:00
MT_Vector3 direction = MT_Vector3(0,0,-1);
direction.normalize();
direction *= 100000;
MT_Point3 topoint = frompoint + direction;
2002-10-12 11:37:38 +00:00
KX_Scene* kxscene = (KX_Scene*) m_auxilaryClientInfo;
PHY_IPhysicsEnvironment* physics_environment = kxscene->GetPhysicsEnvironment();
KX_IPhysicsController* physics_controller = gameobj->GetPhysicsController();
KX_GameObject *parent = gameobj->GetParent();
if (!physics_controller && parent)
physics_controller = parent->GetPhysicsController();
if (parent)
parent->Release();
2002-10-12 11:37:38 +00:00
KX_RayCast::Callback<KX_BlenderRenderTools> callback(this, physics_controller, oglmatrix);
if (!KX_RayCast::RayTest(physics_environment, frompoint, topoint, callback))
2002-10-12 11:37:38 +00:00
{
// couldn't find something to cast the shadow on...
2002-10-12 11:37:38 +00:00
glMultMatrixd(oglmatrix);
}
} else
{
// 'normal' object
glMultMatrixd(oglmatrix);
}
}
}
void KX_BlenderRenderTools::RenderText2D(RAS_TEXT_RENDER_MODE mode,
const char* text,
int xco,
int yco,
int width,
int height)
{
STR_String tmpstr(text);
if(mode == RAS_IRenderTools::RAS_TEXT_PADDED)
BL_print_gamedebug_line_padded(tmpstr.Ptr(), xco, yco, width, height);
else
BL_print_gamedebug_line(tmpstr.Ptr(), xco, yco, width, height);
}
/* Render Text renders text into a (series of) polygon, using a texture font,
* Each character consists of one polygon (one quad or two triangles) */
void KX_BlenderRenderTools::RenderText(
int mode,
RAS_IPolyMaterial* polymat,
float v1[3], float v2[3], float v3[3], float v4[3], int glattrib)
2002-10-12 11:37:38 +00:00
{
STR_String mytext = ((CValue*)m_clientobject)->GetPropertyText("Text");
const unsigned int flag = polymat->GetFlag();
Added custom vertex/edge/face data for meshes: All data layers, including MVert/MEdge/MFace, are now managed as custom data layers. The pointers like Mesh.mvert, Mesh.dvert or Mesh.mcol are still used of course, but allocating, copying or freeing these arrays should be done through the CustomData API. Work in progress documentation on this is here: http://mediawiki.blender.org/index.php/BlenderDev/BlenderArchitecture/CustomData Replaced TFace by MTFace: This is the same struct, except that it does not contain color, that now always stays separated in MCol. This was not a good design decision to begin with, and it is needed for adding multiple color layers later. Note that this does mean older Blender versions will not be able to read UV coordinates from the next release, due to an SDNA limitation. Removed DispListMesh: This now fully replaced by DerivedMesh. To provide access to arrays of vertices, edges and faces, like DispListMesh does. The semantics of the DerivedMesh.getVertArray() and similar functions were changed to return a pointer to an array if one exists, or otherwise allocate a temporary one. On releasing the DerivedMesh, this temporary array will be removed automatically. Removed ssDM and meshDM DerivedMesh backends: The ssDM backend was for DispListMesh, so that became obsolete automatically. The meshDM backend was replaced by the custom data backend, that now figures out which layers need to be modified, and only duplicates those. This changes code in many places, and overall removes 2514 lines of code. So, there's a good chance this might break some stuff, although I've been testing it for a few days now. The good news is, adding multiple color and uv layers should now become easy.
2006-11-20 04:28:02 +00:00
struct MTFace* tface = 0;
unsigned int *col = 0;
if(flag & RAS_BLENDERMAT) {
KX_BlenderMaterial *bl_mat = static_cast<KX_BlenderMaterial*>(polymat);
Added custom vertex/edge/face data for meshes: All data layers, including MVert/MEdge/MFace, are now managed as custom data layers. The pointers like Mesh.mvert, Mesh.dvert or Mesh.mcol are still used of course, but allocating, copying or freeing these arrays should be done through the CustomData API. Work in progress documentation on this is here: http://mediawiki.blender.org/index.php/BlenderDev/BlenderArchitecture/CustomData Replaced TFace by MTFace: This is the same struct, except that it does not contain color, that now always stays separated in MCol. This was not a good design decision to begin with, and it is needed for adding multiple color layers later. Note that this does mean older Blender versions will not be able to read UV coordinates from the next release, due to an SDNA limitation. Removed DispListMesh: This now fully replaced by DerivedMesh. To provide access to arrays of vertices, edges and faces, like DispListMesh does. The semantics of the DerivedMesh.getVertArray() and similar functions were changed to return a pointer to an array if one exists, or otherwise allocate a temporary one. On releasing the DerivedMesh, this temporary array will be removed automatically. Removed ssDM and meshDM DerivedMesh backends: The ssDM backend was for DispListMesh, so that became obsolete automatically. The meshDM backend was replaced by the custom data backend, that now figures out which layers need to be modified, and only duplicates those. This changes code in many places, and overall removes 2514 lines of code. So, there's a good chance this might break some stuff, although I've been testing it for a few days now. The good news is, adding multiple color and uv layers should now become easy.
2006-11-20 04:28:02 +00:00
tface = bl_mat->GetMTFace();
col = bl_mat->GetMCol();
} else {
KX_PolygonMaterial* blenderpoly = static_cast<KX_PolygonMaterial*>(polymat);
Added custom vertex/edge/face data for meshes: All data layers, including MVert/MEdge/MFace, are now managed as custom data layers. The pointers like Mesh.mvert, Mesh.dvert or Mesh.mcol are still used of course, but allocating, copying or freeing these arrays should be done through the CustomData API. Work in progress documentation on this is here: http://mediawiki.blender.org/index.php/BlenderDev/BlenderArchitecture/CustomData Replaced TFace by MTFace: This is the same struct, except that it does not contain color, that now always stays separated in MCol. This was not a good design decision to begin with, and it is needed for adding multiple color layers later. Note that this does mean older Blender versions will not be able to read UV coordinates from the next release, due to an SDNA limitation. Removed DispListMesh: This now fully replaced by DerivedMesh. To provide access to arrays of vertices, edges and faces, like DispListMesh does. The semantics of the DerivedMesh.getVertArray() and similar functions were changed to return a pointer to an array if one exists, or otherwise allocate a temporary one. On releasing the DerivedMesh, this temporary array will be removed automatically. Removed ssDM and meshDM DerivedMesh backends: The ssDM backend was for DispListMesh, so that became obsolete automatically. The meshDM backend was replaced by the custom data backend, that now figures out which layers need to be modified, and only duplicates those. This changes code in many places, and overall removes 2514 lines of code. So, there's a good chance this might break some stuff, although I've been testing it for a few days now. The good news is, adding multiple color and uv layers should now become easy.
2006-11-20 04:28:02 +00:00
tface = blenderpoly->GetMTFace();
col = blenderpoly->GetMCol();
}
2002-10-12 11:37:38 +00:00
GPU_render_text(tface, mode, mytext, mytext.Length(), col, v1, v2, v3, v4, glattrib);
2002-10-12 11:37:38 +00:00
}
void KX_BlenderRenderTools::PushMatrix()
{
glPushMatrix();
}
void KX_BlenderRenderTools::PopMatrix()
{
glPopMatrix();
}
int KX_BlenderRenderTools::applyLights(int objectlayer, const MT_Transform& viewmat)
2002-10-12 11:37:38 +00:00
{
// taken from blender source, incompatibility between Blender Object / GameObject
KX_Scene* kxscene = (KX_Scene*)m_auxilaryClientInfo;
int scenelayer = ~0;
float glviewmat[16];
unsigned int count;
2002-10-12 11:37:38 +00:00
float vec[4];
2002-10-12 11:37:38 +00:00
vec[3]= 1.0;
if(kxscene && kxscene->GetBlenderScene())
scenelayer = kxscene->GetBlenderScene()->lay;
2002-10-12 11:37:38 +00:00
for(count=0; count<m_numgllights; count++)
2002-10-12 11:37:38 +00:00
glDisable((GLenum)(GL_LIGHT0+count));
//std::vector<struct RAS_LightObject*> m_lights;
std::vector<struct RAS_LightObject*>::iterator lit = m_lights.begin();
viewmat.getValue(glviewmat);
2002-10-12 11:37:38 +00:00
glPushMatrix();
glLoadMatrixf(glviewmat);
for (lit = m_lights.begin(), count = 0; !(lit==m_lights.end()) && count < m_numgllights; ++lit)
2002-10-12 11:37:38 +00:00
{
RAS_LightObject* lightdata = (*lit);
KX_Scene* lightscene = (KX_Scene*)lightdata->m_scene;
2002-10-12 11:37:38 +00:00
/* only use lights in the same layer as the object */
if(!(lightdata->m_layer & objectlayer))
continue;
/* only use lights in the same scene, and in a visible layer */
if(kxscene != lightscene || !(lightdata->m_layer & scenelayer))
continue;
vec[0] = (*(lightdata->m_worldmatrix))(0,3);
vec[1] = (*(lightdata->m_worldmatrix))(1,3);
vec[2] = (*(lightdata->m_worldmatrix))(2,3);
vec[3] = 1;
if(lightdata->m_type==RAS_LightObject::LIGHT_SUN) {
2002-10-12 11:37:38 +00:00
vec[0] = (*(lightdata->m_worldmatrix))(0,2);
vec[1] = (*(lightdata->m_worldmatrix))(1,2);
vec[2] = (*(lightdata->m_worldmatrix))(2,2);
//vec[0]= base->object->obmat[2][0];
//vec[1]= base->object->obmat[2][1];
//vec[2]= base->object->obmat[2][2];
vec[3]= 0.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
}
else {
//vec[3]= 1.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
glLightf((GLenum)(GL_LIGHT0+count), GL_CONSTANT_ATTENUATION, 1.0);
glLightf((GLenum)(GL_LIGHT0+count), GL_LINEAR_ATTENUATION, lightdata->m_att1/lightdata->m_distance);
// without this next line it looks backward compatible.
//attennuation still is acceptable
glLightf((GLenum)(GL_LIGHT0+count), GL_QUADRATIC_ATTENUATION, lightdata->m_att2/(lightdata->m_distance*lightdata->m_distance));
if(lightdata->m_type==RAS_LightObject::LIGHT_SPOT) {
vec[0] = -(*(lightdata->m_worldmatrix))(0,2);
vec[1] = -(*(lightdata->m_worldmatrix))(1,2);
vec[2] = -(*(lightdata->m_worldmatrix))(2,2);
//vec[0]= -base->object->obmat[2][0];
//vec[1]= -base->object->obmat[2][1];
//vec[2]= -base->object->obmat[2][2];
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPOT_DIRECTION, vec);
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, lightdata->m_spotsize/2.0);
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_EXPONENT, 128.0*lightdata->m_spotblend);
}
else glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, 180.0);
}
if (lightdata->m_nodiffuse)
{
vec[0] = vec[1] = vec[2] = vec[3] = 0.0;
} else {
vec[0]= lightdata->m_energy*lightdata->m_red;
vec[1]= lightdata->m_energy*lightdata->m_green;
vec[2]= lightdata->m_energy*lightdata->m_blue;
vec[3]= 1.0;
}
glLightfv((GLenum)(GL_LIGHT0+count), GL_DIFFUSE, vec);
if (lightdata->m_nospecular)
{
vec[0] = vec[1] = vec[2] = vec[3] = 0.0;
} else if (lightdata->m_nodiffuse) {
vec[0]= lightdata->m_energy*lightdata->m_red;
vec[1]= lightdata->m_energy*lightdata->m_green;
vec[2]= lightdata->m_energy*lightdata->m_blue;
vec[3]= 1.0;
2002-10-12 11:37:38 +00:00
}
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPECULAR, vec);
glEnable((GLenum)(GL_LIGHT0+count));
count++;
2002-10-12 11:37:38 +00:00
}
glPopMatrix();
2002-10-12 11:37:38 +00:00
return count;
}
void KX_BlenderRenderTools::MotionBlur(RAS_IRasterizer* rasterizer)
{
int state = rasterizer->GetMotionBlurState();
float motionblurvalue;
if(state)
{
motionblurvalue = rasterizer->GetMotionBlurValue();
if(state==1)
{
//bugfix:load color buffer into accum buffer for the first time(state=1)
glAccum(GL_LOAD, 1.0);
rasterizer->SetMotionBlurState(2);
}
else if(motionblurvalue>=0.0 && motionblurvalue<=1.0)
{
glAccum(GL_MULT, motionblurvalue);
glAccum(GL_ACCUM, 1-motionblurvalue);
glAccum(GL_RETURN, 1.0);
glFlush();
}
}
}
void KX_BlenderRenderTools::Update2DFilter(vector<STR_String>& propNames, void* gameObj, RAS_2DFilterManager::RAS_2DFILTER_MODE filtermode, int pass, STR_String& text)
2007-10-22 20:24:26 +00:00
{
m_filtermanager.EnableFilter(propNames, gameObj, filtermode, pass, text);
2007-10-22 20:24:26 +00:00
}
void KX_BlenderRenderTools::Render2DFilters(RAS_ICanvas* canvas)
{
m_filtermanager.RenderFilters(canvas);
}