blender/intern/cycles/kernel/closure/bsdf_microfacet.h

1009 lines
31 KiB
C
Raw Normal View History

2012-06-09 17:22:52 +00:00
/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __BSDF_MICROFACET_H__
#define __BSDF_MICROFACET_H__
CCL_NAMESPACE_BEGIN
/* Approximate erf and erfinv implementations.
2014-10-03 13:28:52 +00:00
* Implementation comes straight from Wikipedia:
*
2014-10-03 13:28:52 +00:00
* http://en.wikipedia.org/wiki/Error_function
*
* Some constants are baked into the code.
*/
ccl_device_inline float approx_erff_do(float x)
{
/* Such a clamp doesn't give much distortion to the output value
* and gives quite a few of the speedup.
*/
if(x > 3.0f) {
return 1.0f;
}
float t = 1.0f / (1.0f + 0.47047f*x);
return (1.0f -
t*(0.3480242f + t*(-0.0958798f + t*0.7478556f)) * expf(-x*x));
}
ccl_device_inline float approx_erff(float x)
{
if(x >= 0.0f) {
return approx_erff_do(x);
}
else {
return -approx_erff_do(-x);
}
}
ccl_device_inline float approx_erfinvf_do(float x)
{
if(x <= 0.7f) {
const float x2 = x * x;
const float a1 = 0.886226899f;
const float a2 = -1.645349621f;
const float a3 = 0.914624893f;
const float a4 = -0.140543331f;
const float b1 = -2.118377725f;
const float b2 = 1.442710462f;
const float b3 = -0.329097515f;
const float b4 = 0.012229801f;
return x * (((a4 * x2 + a3) * x2 + a2) * x2 + a1) /
((((b4 * x2 + b3) * x2 + b2) * x2 + b1) * x2 + 1.0f);
}
else {
const float c1 = -1.970840454f;
const float c2 = -1.624906493f;
const float c3 = 3.429567803f;
const float c4 = 1.641345311f;
const float d1 = 3.543889200f;
const float d2 = 1.637067800f;
const float z = sqrtf(-logf((1.0f - x) * 0.5f));
return (((c4 * z + c3) * z + c2) * z + c1) /
((d2 * z + d1) * z + 1.0f);
}
}
ccl_device_inline float approx_erfinvf(float x)
{
if(x >= 0.0f) {
return approx_erfinvf_do(x);
}
else {
return -approx_erfinvf_do(-x);
}
}
/* Beckmann and GGX microfacet importance sampling from:
*
* Importance Sampling Microfacet-Based BSDFs using the Distribution of Visible Normals.
* E. Heitz and E. d'Eon, EGSR 2014 */
ccl_device_inline void microfacet_beckmann_sample_slopes(
KernelGlobals *kg,
const float cos_theta_i, const float sin_theta_i,
float randu, float randv, float *slope_x, float *slope_y,
float *G1i)
{
/* special case (normal incidence) */
if(cos_theta_i >= 0.99999f) {
const float r = sqrtf(-logf(randu));
const float phi = M_2PI_F * randv;
*slope_x = r * cosf(phi);
*slope_y = r * sinf(phi);
*G1i = 1.0f;
return;
}
/* precomputations */
const float tan_theta_i = sin_theta_i/cos_theta_i;
const float inv_a = tan_theta_i;
const float a = 1.0f/inv_a;
const float erf_a = approx_erff(a);
const float exp_a2 = expf(-a*a);
const float SQRT_PI_INV = 0.56418958354f;
const float Lambda = 0.5f*(erf_a - 1.0f) + (0.5f*SQRT_PI_INV)*(exp_a2*inv_a);
const float G1 = 1.0f/(1.0f + Lambda); /* masking */
*G1i = G1;
#if 0
const float C = 1.0f - G1 * erf_a;
/* sample slope X */
if(randu < C) {
/* rescale randu */
randu = randu / C;
const float w_1 = 0.5f * SQRT_PI_INV * sin_theta_i * exp_a2;
const float w_2 = cos_theta_i * (0.5f - 0.5f*erf_a);
const float p = w_1 / (w_1 + w_2);
if(randu < p) {
randu = randu / p;
*slope_x = -sqrtf(-logf(randu*exp_a2));
}
else {
randu = (randu - p) / (1.0f - p);
*slope_x = approx_erfinvf(randu - 1.0f - randu*erf_a);
}
}
else {
/* rescale randu */
randu = (randu - C) / (1.0f - C);
*slope_x = approx_erfinvf((-1.0f + 2.0f*randu)*erf_a);
const float p = (-(*slope_x)*sin_theta_i + cos_theta_i) / (2.0f*cos_theta_i);
if(randv > p) {
*slope_x = -(*slope_x);
randv = (randv - p) / (1.0f - p);
}
else
randv = randv / p;
}
/* sample slope Y */
*slope_y = approx_erfinvf(2.0f*randv - 1.0f);
#else
/* use precomputed table, because it better preserves stratification
* of the random number pattern */
int beckmann_table_offset = kernel_data.tables.beckmann_offset;
*slope_x = lookup_table_read_2D(kg, randu, cos_theta_i,
beckmann_table_offset, BECKMANN_TABLE_SIZE, BECKMANN_TABLE_SIZE);
*slope_y = approx_erfinvf(2.0f*randv - 1.0f);
#endif
}
ccl_device_inline void microfacet_ggx_sample_slopes(
const float cos_theta_i, const float sin_theta_i,
float randu, float randv, float *slope_x, float *slope_y,
float *G1i)
{
/* special case (normal incidence) */
if(cos_theta_i >= 0.99999f) {
const float r = sqrtf(randu/(1.0f - randu));
const float phi = M_2PI_F * randv;
*slope_x = r * cosf(phi);
*slope_y = r * sinf(phi);
*G1i = 1.0f;
return;
}
/* precomputations */
const float tan_theta_i = sin_theta_i/cos_theta_i;
const float G1_inv = 0.5f * (1.0f + safe_sqrtf(1.0f + tan_theta_i*tan_theta_i));
*G1i = 1.0f/G1_inv;
/* sample slope_x */
const float A = 2.0f*randu*G1_inv - 1.0f;
const float AA = A*A;
const float tmp = 1.0f/(AA - 1.0f);
const float B = tan_theta_i;
const float BB = B*B;
const float D = safe_sqrtf(BB*(tmp*tmp) - (AA - BB)*tmp);
const float slope_x_1 = B*tmp - D;
const float slope_x_2 = B*tmp + D;
*slope_x = (A < 0.0f || slope_x_2*tan_theta_i > 1.0f)? slope_x_1: slope_x_2;
/* sample slope_y */
float S;
if(randv > 0.5f) {
S = 1.0f;
randv = 2.0f*(randv - 0.5f);
}
else {
S = -1.0f;
randv = 2.0f*(0.5f - randv);
}
const float z = (randv*(randv*(randv*0.27385f - 0.73369f) + 0.46341f)) / (randv*(randv*(randv*0.093073f + 0.309420f) - 1.000000f) + 0.597999f);
*slope_y = S * z * safe_sqrtf(1.0f + (*slope_x)*(*slope_x));
}
ccl_device_inline float3 microfacet_sample_stretched(
KernelGlobals *kg, const float3 omega_i,
const float alpha_x, const float alpha_y,
const float randu, const float randv,
bool beckmann, float *G1i)
{
/* 1. stretch omega_i */
float3 omega_i_ = make_float3(alpha_x * omega_i.x, alpha_y * omega_i.y, omega_i.z);
omega_i_ = normalize(omega_i_);
/* get polar coordinates of omega_i_ */
float costheta_ = 1.0f;
float sintheta_ = 0.0f;
float cosphi_ = 1.0f;
float sinphi_ = 0.0f;
if(omega_i_.z < 0.99999f) {
costheta_ = omega_i_.z;
sintheta_ = safe_sqrtf(1.0f - costheta_*costheta_);
float invlen = 1.0f/sintheta_;
cosphi_ = omega_i_.x * invlen;
sinphi_ = omega_i_.y * invlen;
}
/* 2. sample P22_{omega_i}(x_slope, y_slope, 1, 1) */
float slope_x, slope_y;
if(beckmann) {
microfacet_beckmann_sample_slopes(kg, costheta_, sintheta_,
randu, randv, &slope_x, &slope_y, G1i);
}
else {
microfacet_ggx_sample_slopes(costheta_, sintheta_,
randu, randv, &slope_x, &slope_y, G1i);
}
/* 3. rotate */
float tmp = cosphi_*slope_x - sinphi_*slope_y;
slope_y = sinphi_*slope_x + cosphi_*slope_y;
slope_x = tmp;
/* 4. unstretch */
slope_x = alpha_x * slope_x;
slope_y = alpha_y * slope_y;
/* 5. compute normal */
return normalize(make_float3(-slope_x, -slope_y, 1.0f));
}
/* GGX microfacet with Smith shadow-masking from:
*
* Microfacet Models for Refraction through Rough Surfaces
* B. Walter, S. R. Marschner, H. Li, K. E. Torrance, EGSR 2007
*
* Anisotropic from:
*
* Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs
* E. Heitz, Research Report 2014
*
* Anisotropy is only supported for reflection currently, but adding it for
2014-08-02 06:53:52 +00:00
* transmission is just a matter of copying code from reflection if needed. */
ccl_device int bsdf_microfacet_ggx_setup(ShaderClosure *sc)
{
sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* alpha_x */
sc->data1 = sc->data0; /* alpha_y */
sc->type = CLOSURE_BSDF_MICROFACET_GGX_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}
ccl_device int bsdf_microfacet_ggx_aniso_setup(ShaderClosure *sc)
{
sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* alpha_x */
sc->data1 = clamp(sc->data1, 0.0f, 1.0f); /* alpha_y */
sc->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}
ccl_device int bsdf_microfacet_ggx_refraction_setup(ShaderClosure *sc)
{
sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* alpha_x */
sc->data1 = sc->data0; /* alpha_y */
sc->type = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}
ccl_device void bsdf_microfacet_ggx_blur(ShaderClosure *sc, float roughness)
{
sc->data0 = fmaxf(roughness, sc->data0); /* alpha_x */
sc->data1 = fmaxf(roughness, sc->data1); /* alpha_y */
}
ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
float alpha_x = sc->data0;
float alpha_y = sc->data1;
int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
float3 N = sc->N;
if(m_refractive || fmaxf(alpha_x, alpha_y) <= 1e-4f)
return make_float3(0, 0, 0);
float cosNO = dot(N, I);
float cosNI = dot(N, omega_in);
if(cosNI > 0 && cosNO > 0) {
/* get half vector */
float3 m = normalize(omega_in + I);
float alpha2 = alpha_x * alpha_y;
float D, G1o, G1i;
if(alpha_x == alpha_y) {
/* isotropic
* eq. 20: (F*G*D)/(4*in*on)
* eq. 33: first we calculate D(m) */
float cosThetaM = dot(N, m);
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
/* eq. 34: now calculate G1(i,m) and G1(o,m) */
G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
}
else {
/* anisotropic */
float3 X, Y, Z = N;
make_orthonormals_tangent(Z, sc->T, &X, &Y);
/* distribution */
float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
float slope_x = -local_m.x/(local_m.z*alpha_x);
float slope_y = -local_m.y/(local_m.z*alpha_y);
float slope_len = 1 + slope_x*slope_x + slope_y*slope_y;
float cosThetaM = local_m.z;
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
D = 1 / ((slope_len * slope_len) * M_PI_F * alpha2 * cosThetaM4);
/* G1(i,m) and G1(o,m) */
float tanThetaO2 = (1 - cosNO * cosNO) / (cosNO * cosNO);
float cosPhiO = dot(I, X);
float sinPhiO = dot(I, Y);
float alphaO2 = (cosPhiO*cosPhiO)*(alpha_x*alpha_x) + (sinPhiO*sinPhiO)*(alpha_y*alpha_y);
alphaO2 /= cosPhiO*cosPhiO + sinPhiO*sinPhiO;
G1o = 2 / (1 + safe_sqrtf(1 + alphaO2 * tanThetaO2));
float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
float cosPhiI = dot(omega_in, X);
float sinPhiI = dot(omega_in, Y);
float alphaI2 = (cosPhiI*cosPhiI)*(alpha_x*alpha_x) + (sinPhiI*sinPhiI)*(alpha_y*alpha_y);
alphaI2 /= cosPhiI*cosPhiI + sinPhiI*sinPhiI;
G1i = 2 / (1 + safe_sqrtf(1 + alphaI2 * tanThetaI2));
}
float G = G1o * G1i;
/* eq. 20 */
float common = D * 0.25f / cosNO;
float out = G * common;
/* eq. 2 in distribution of visible normals sampling
* pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
/* eq. 38 - but see also:
* eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
* pdf = pm * 0.25 / dot(m, I); */
*pdf = G1o * common;
return make_float3(out, out, out);
}
return make_float3(0, 0, 0);
}
ccl_device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
float alpha_x = sc->data0;
float alpha_y = sc->data1;
float m_eta = sc->data2;
int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
float3 N = sc->N;
if(!m_refractive || fmaxf(alpha_x, alpha_y) <= 1e-4f)
return make_float3(0, 0, 0);
float cosNO = dot(N, I);
float cosNI = dot(N, omega_in);
if(cosNO <= 0 || cosNI >= 0)
return make_float3(0, 0, 0); /* vectors on same side -- not possible */
/* compute half-vector of the refraction (eq. 16) */
float3 ht = -(m_eta * omega_in + I);
float3 Ht = normalize(ht);
float cosHO = dot(Ht, I);
float cosHI = dot(Ht, omega_in);
/* those situations makes chi+ terms in eq. 33, 34 be zero */
if(dot(Ht, N) <= 0.0f || cosHO * cosNO <= 0.0f || cosHI * cosNI <= 0.0f)
return make_float3(0.0f, 0.0f, 0.0f);
float D, G1o, G1i;
/* eq. 33: first we calculate D(m) with m=Ht: */
float alpha2 = alpha_x * alpha_y;
float cosThetaM = dot(N, Ht);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
/* eq. 34: now calculate G1(i,m) and G1(o,m) */
G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
/* probability */
float Ht2 = dot(ht, ht);
/* eq. 2 in distribution of visible normals sampling
* pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
/* out = fabsf(cosHI * cosHO) * (m_eta * m_eta) * G * D / (cosNO * Ht2)
* pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2 */
float common = D * (m_eta * m_eta) / (cosNO * Ht2);
float out = G * fabsf(cosHI * cosHO) * common;
*pdf = G1o * cosHO * fabsf(cosHI) * common;
return make_float3(out, out, out);
}
ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
float alpha_x = sc->data0;
float alpha_y = sc->data1;
int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
float3 N = sc->N;
float cosNO = dot(N, I);
if(cosNO > 0) {
float3 X, Y, Z = N;
if(alpha_x == alpha_y)
make_orthonormals(Z, &X, &Y);
else
make_orthonormals_tangent(Z, sc->T, &X, &Y);
/* importance sampling with distribution of visible normals. vectors are
* transformed to local space before and after */
float3 local_I = make_float3(dot(X, I), dot(Y, I), cosNO);
float3 local_m;
float G1o;
local_m = microfacet_sample_stretched(kg, local_I, alpha_x, alpha_y,
randu, randv, false, &G1o);
float3 m = X*local_m.x + Y*local_m.y + Z*local_m.z;
float cosThetaM = local_m.z;
/* reflection or refraction? */
if(!m_refractive) {
float cosMO = dot(m, I);
if(cosMO > 0) {
/* eq. 39 - compute actual reflected direction */
*omega_in = 2 * cosMO * m - I;
if(dot(Ng, *omega_in) > 0) {
if(fmaxf(alpha_x, alpha_y) <= 1e-4f) {
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
}
else {
/* microfacet normal is visible to this ray */
/* eq. 33 */
float alpha2 = alpha_x * alpha_y;
float D, G1i;
if(alpha_x == alpha_y) {
/* isotropic */
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = 1/(cosThetaM2) - 1;
D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
/* eval BRDF*cosNI */
float cosNI = dot(N, *omega_in);
/* eq. 34: now calculate G1(i,m) */
G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
}
else {
/* anisotropic distribution */
float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
float slope_x = -local_m.x/(local_m.z*alpha_x);
float slope_y = -local_m.y/(local_m.z*alpha_y);
float slope_len = 1 + slope_x*slope_x + slope_y*slope_y;
float cosThetaM = local_m.z;
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
D = 1 / ((slope_len * slope_len) * M_PI_F * alpha2 * cosThetaM4);
/* calculate G1(i,m) */
float cosNI = dot(N, *omega_in);
float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
float cosPhiI = dot(*omega_in, X);
float sinPhiI = dot(*omega_in, Y);
float alphaI2 = (cosPhiI*cosPhiI)*(alpha_x*alpha_x) + (sinPhiI*sinPhiI)*(alpha_y*alpha_y);
alphaI2 /= cosPhiI*cosPhiI + sinPhiI*sinPhiI;
G1i = 2 / (1 + safe_sqrtf(1 + alphaI2 * tanThetaI2));
}
/* see eval function for derivation */
float common = (G1o * D) * 0.25f / cosNO;
float out = G1i * common;
*pdf = common;
*eval = make_float3(out, out, out);
}
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
*domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
#endif
}
}
2012-09-20 12:29:28 +00:00
}
else {
/* CAUTION: the i and o variables are inverted relative to the paper
* eq. 39 - compute actual refractive direction */
float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
float3 dRdx, dRdy, dTdx, dTdy;
#endif
float m_eta = sc->data2;
bool inside;
fresnel_dielectric(m_eta, m, I, &R, &T,
#ifdef __RAY_DIFFERENTIALS__
dIdx, dIdy, &dRdx, &dRdy, &dTdx, &dTdy,
#endif
&inside);
if(!inside) {
*omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = dTdx;
*domega_in_dy = dTdy;
#endif
if(fmaxf(alpha_x, alpha_y) <= 1e-4f || fabsf(m_eta - 1.0f) < 1e-4f) {
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
}
else {
/* eq. 33 */
float alpha2 = alpha_x * alpha_y;
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = 1/(cosThetaM2) - 1;
float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
/* eval BRDF*cosNI */
float cosNI = dot(N, *omega_in);
/* eq. 34: now calculate G1(i,m) */
float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
/* eq. 21 */
float cosHI = dot(m, *omega_in);
float cosHO = dot(m, I);
float Ht2 = m_eta * cosHI + cosHO;
Ht2 *= Ht2;
/* see eval function for derivation */
float common = (G1o * D) * (m_eta * m_eta) / (cosNO * Ht2);
float out = G1i * fabsf(cosHI * cosHO) * common;
*pdf = cosHO * fabsf(cosHI) * common;
*eval = make_float3(out, out, out);
}
}
}
}
return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
}
/* Beckmann microfacet with Smith shadow-masking from:
*
* Microfacet Models for Refraction through Rough Surfaces
* B. Walter, S. R. Marschner, H. Li, K. E. Torrance, EGSR 2007 */
ccl_device int bsdf_microfacet_beckmann_setup(ShaderClosure *sc)
{
sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* alpha_x */
sc->data1 = sc->data0; /* alpha_y */
sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}
ccl_device int bsdf_microfacet_beckmann_aniso_setup(ShaderClosure *sc)
{
sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* alpha_x */
sc->data1 = clamp(sc->data1, 0.0f, 1.0f); /* alpha_y */
sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}
ccl_device int bsdf_microfacet_beckmann_refraction_setup(ShaderClosure *sc)
{
sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* alpha_x */
sc->data1 = sc->data0; /* alpha_y */
sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}
ccl_device void bsdf_microfacet_beckmann_blur(ShaderClosure *sc, float roughness)
{
sc->data0 = fmaxf(roughness, sc->data0); /* alpha_x */
sc->data1 = fmaxf(roughness, sc->data1); /* alpha_y */
}
ccl_device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
float alpha_x = sc->data0;
float alpha_y = sc->data1;
int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
float3 N = sc->N;
if(m_refractive || fmaxf(alpha_x, alpha_y) <= 1e-4f)
return make_float3(0, 0, 0);
float cosNO = dot(N, I);
float cosNI = dot(N, omega_in);
if(cosNO > 0 && cosNI > 0) {
/* get half vector */
float3 m = normalize(omega_in + I);
float alpha2 = alpha_x * alpha_y;
float D, G1o, G1i;
if(alpha_x == alpha_y) {
/* isotropic
* eq. 20: (F*G*D)/(4*in*on)
* eq. 25: first we calculate D(m) */
float cosThetaM = dot(N, m);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
/* eq. 26, 27: now calculate G1(i,m) and G1(o,m) */
float ao = 1 / (alpha_x * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (alpha_x * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
}
else {
/* anisotropic */
float3 X, Y, Z = N;
make_orthonormals_tangent(Z, sc->T, &X, &Y);
/* distribution */
float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
float slope_x = -local_m.x/(local_m.z*alpha_x);
float slope_y = -local_m.y/(local_m.z*alpha_y);
float cosThetaM = local_m.z;
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
D = expf(-slope_x*slope_x - slope_y*slope_y) / (M_PI_F * alpha2 * cosThetaM4);
/* G1(i,m) and G1(o,m) */
float tanThetaO2 = (1 - cosNO * cosNO) / (cosNO * cosNO);
float cosPhiO = dot(I, X);
float sinPhiO = dot(I, Y);
float alphaO2 = (cosPhiO*cosPhiO)*(alpha_x*alpha_x) + (sinPhiO*sinPhiO)*(alpha_y*alpha_y);
alphaO2 /= cosPhiO*cosPhiO + sinPhiO*sinPhiO;
float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
float cosPhiI = dot(omega_in, X);
float sinPhiI = dot(omega_in, Y);
float alphaI2 = (cosPhiI*cosPhiI)*(alpha_x*alpha_x) + (sinPhiI*sinPhiI)*(alpha_y*alpha_y);
alphaI2 /= cosPhiI*cosPhiI + sinPhiI*sinPhiI;
float ao = 1 / (safe_sqrtf(alphaO2 * tanThetaO2));
float ai = 1 / (safe_sqrtf(alphaI2 * tanThetaI2));
G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
}
float G = G1o * G1i;
/* eq. 20 */
float common = D * 0.25f / cosNO;
float out = G * common;
/* eq. 2 in distribution of visible normals sampling
* pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
/* eq. 38 - but see also:
* eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
* pdf = pm * 0.25 / dot(m, I); */
*pdf = G1o * common;
return make_float3(out, out, out);
}
return make_float3(0, 0, 0);
}
ccl_device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
float alpha_x = sc->data0;
float alpha_y = sc->data1;
float m_eta = sc->data2;
int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
float3 N = sc->N;
if(!m_refractive || fmaxf(alpha_x, alpha_y) <= 1e-4f)
return make_float3(0, 0, 0);
float cosNO = dot(N, I);
float cosNI = dot(N, omega_in);
if(cosNO <= 0 || cosNI >= 0)
return make_float3(0, 0, 0);
/* compute half-vector of the refraction (eq. 16) */
float3 ht = -(m_eta * omega_in + I);
float3 Ht = normalize(ht);
float cosHO = dot(Ht, I);
float cosHI = dot(Ht, omega_in);
/* those situations makes chi+ terms in eq. 25, 27 be zero */
if(dot(Ht, N) <= 0.0f || cosHO * cosNO <= 0.0f || cosHI * cosNI <= 0.0f)
return make_float3(0.0f, 0.0f, 0.0f);
/* eq. 25: first we calculate D(m) with m=Ht: */
float alpha2 = alpha_x * alpha_y;
float cosThetaM = min(dot(N, Ht), 1.0f);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
/* eq. 26, 27: now calculate G1(i,m) and G1(o,m) */
float ao = 1 / (alpha_x * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (alpha_x * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
/* probability */
float Ht2 = dot(ht, ht);
/* eq. 2 in distribution of visible normals sampling
* pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
/* out = fabsf(cosHI * cosHO) * (m_eta * m_eta) * G * D / (cosNO * Ht2)
* pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2 */
float common = D * (m_eta * m_eta) / (cosNO * Ht2);
float out = G * fabsf(cosHI * cosHO) * common;
*pdf = G1o * cosHO * fabsf(cosHI) * common;
return make_float3(out, out, out);
}
ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
float alpha_x = sc->data0;
float alpha_y = sc->data1;
int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
float3 N = sc->N;
float cosNO = dot(N, I);
if(cosNO > 0) {
float3 X, Y, Z = N;
if(alpha_x == alpha_y)
make_orthonormals(Z, &X, &Y);
else
make_orthonormals_tangent(Z, sc->T, &X, &Y);
/* importance sampling with distribution of visible normals. vectors are
* transformed to local space before and after */
float3 local_I = make_float3(dot(X, I), dot(Y, I), cosNO);
float3 local_m;
float G1o;
local_m = microfacet_sample_stretched(kg, local_I, alpha_x, alpha_x,
randu, randv, true, &G1o);
float3 m = X*local_m.x + Y*local_m.y + Z*local_m.z;
float cosThetaM = local_m.z;
/* reflection or refraction? */
if(!m_refractive) {
float cosMO = dot(m, I);
if(cosMO > 0) {
/* eq. 39 - compute actual reflected direction */
*omega_in = 2 * cosMO * m - I;
if(dot(Ng, *omega_in) > 0) {
if(fmaxf(alpha_x, alpha_y) <= 1e-4f) {
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
}
else {
/* microfacet normal is visible to this ray
* eq. 25 */
float alpha2 = alpha_x * alpha_y;
float D, G1i;
if(alpha_x == alpha_y) {
/* istropic distribution */
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = 1/(cosThetaM2) - 1;
D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
/* eval BRDF*cosNI */
float cosNI = dot(N, *omega_in);
/* eq. 26, 27: now calculate G1(i,m) */
float ai = 1 / (alpha_x * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
}
else {
/* anisotropic distribution */
float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
float slope_x = -local_m.x/(local_m.z*alpha_x);
float slope_y = -local_m.y/(local_m.z*alpha_y);
float cosThetaM = local_m.z;
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
D = expf(-slope_x*slope_x - slope_y*slope_y) / (M_PI_F * alpha2 * cosThetaM4);
/* G1(i,m) */
float cosNI = dot(N, *omega_in);
float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
float cosPhiI = dot(*omega_in, X);
float sinPhiI = dot(*omega_in, Y);
float alphaI2 = (cosPhiI*cosPhiI)*(alpha_x*alpha_x) + (sinPhiI*sinPhiI)*(alpha_y*alpha_y);
alphaI2 /= cosPhiI*cosPhiI + sinPhiI*sinPhiI;
float ai = 1 / (safe_sqrtf(alphaI2 * tanThetaI2));
G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
}
float G = G1o * G1i;
/* see eval function for derivation */
float common = D * 0.25f / cosNO;
float out = G * common;
*pdf = G1o * common;
*eval = make_float3(out, out, out);
}
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
*domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
#endif
}
}
2012-09-20 12:29:28 +00:00
}
else {
/* CAUTION: the i and o variables are inverted relative to the paper
* eq. 39 - compute actual refractive direction */
float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
float3 dRdx, dRdy, dTdx, dTdy;
#endif
float m_eta = sc->data2;
bool inside;
fresnel_dielectric(m_eta, m, I, &R, &T,
#ifdef __RAY_DIFFERENTIALS__
dIdx, dIdy, &dRdx, &dRdy, &dTdx, &dTdy,
#endif
&inside);
if(!inside) {
*omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = dTdx;
*domega_in_dy = dTdy;
#endif
if(fmaxf(alpha_x, alpha_y) <= 1e-4f || fabsf(m_eta - 1.0f) < 1e-4f) {
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
}
else {
/* eq. 33 */
float alpha2 = alpha_x * alpha_y;
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = 1/(cosThetaM2) - 1;
float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
/* eval BRDF*cosNI */
float cosNI = dot(N, *omega_in);
/* eq. 26, 27: now calculate G1(i,m) */
float ai = 1 / (alpha_x * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
/* eq. 21 */
float cosHI = dot(m, *omega_in);
float cosHO = dot(m, I);
float Ht2 = m_eta * cosHI + cosHO;
Ht2 *= Ht2;
/* see eval function for derivation */
float common = D * (m_eta * m_eta) / (cosNO * Ht2);
float out = G * fabsf(cosHI * cosHO) * common;
*pdf = G1o * cosHO * fabsf(cosHI) * common;
*eval = make_float3(out, out, out);
}
}
}
}
return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
}
CCL_NAMESPACE_END
#endif /* __BSDF_MICROFACET_H__ */