blender/intern/cycles/kernel/geom/geom_motion_triangle.h

424 lines
14 KiB
C
Raw Normal View History

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Motion Triangle Primitive
*
* These are stored as regular triangles, plus extra positions and normals at
* times other than the frame center. Computing the triangle vertex positions
* or normals at a given ray time is a matter of interpolation of the two steps
* between which the ray time lies.
*
* The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION
* and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes.
*/
CCL_NAMESPACE_BEGIN
/* Time interpolation of vertex positions and normals */
ccl_device_inline int find_attribute_motion(KernelGlobals *kg, int object, uint id, AttributeElement *elem)
{
/* todo: find a better (faster) solution for this, maybe store offset per object */
uint attr_offset = object*kernel_data.bvh.attributes_map_stride;
uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
while(attr_map.x != id) {
attr_offset += ATTR_PRIM_TYPES;
attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
}
*elem = (AttributeElement)attr_map.y;
/* return result */
return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z;
}
ccl_device_inline void motion_triangle_verts_for_step(KernelGlobals *kg, float3 tri_vindex, int offset, int numverts, int numsteps, int step, float3 verts[3])
{
if(step == numsteps) {
/* center step: regular vertex location */
verts[0] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
verts[1] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
verts[2] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
}
else {
/* center step not store in this array */
if(step > numsteps)
step--;
offset += step*numverts;
verts[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.x)));
verts[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.y)));
verts[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.z)));
}
}
ccl_device_inline void motion_triangle_normals_for_step(KernelGlobals *kg, float3 tri_vindex, int offset, int numverts, int numsteps, int step, float3 normals[3])
{
if(step == numsteps) {
/* center step: regular vertex location */
normals[0] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.x)));
normals[1] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.y)));
normals[2] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.z)));
}
else {
/* center step not stored in this array */
if(step > numsteps)
step--;
offset += step*numverts;
normals[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.x)));
normals[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.y)));
normals[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.z)));
}
}
ccl_device_inline void motion_triangle_vertices(KernelGlobals *kg, int object, int prim, float time, float3 verts[3])
{
/* get motion info */
int numsteps, numverts;
object_motion_info(kg, object, &numsteps, &numverts, NULL);
/* figure out which steps we need to fetch and their interpolation factor */
int maxstep = numsteps*2;
int step = min((int)(time*maxstep), maxstep-1);
float t = time*maxstep - step;
/* find attribute */
AttributeElement elem;
int offset = find_attribute_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* fetch vertex coordinates */
float3 next_verts[3];
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, prim));
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);
/* interpolate between steps */
verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
}
/* Refine triangle intersection to more precise hit point. For rays that travel
* far the precision is often not so good, this reintersects the primitive from
* a closer distance. */
ccl_device_inline float3 motion_triangle_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, float3 verts[3])
{
float3 P = ray->P;
float3 D = ray->D;
float t = isect->t;
#ifdef __INTERSECTION_REFINE__
if(isect->object != OBJECT_NONE) {
if(UNLIKELY(t == 0.0f)) {
return P;
}
# ifdef __OBJECT_MOTION__
Transform tfm = ccl_fetch(sd, ob_itfm);
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
# endif
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D*t);
D = normalize_len(D, &t);
}
P = P + D*t;
/* compute refined intersection distance */
const float3 e1 = verts[0] - verts[2];
const float3 e2 = verts[1] - verts[2];
const float3 s1 = cross(D, e2);
const float invdivisor = 1.0f/dot(s1, e1);
const float3 d = P - verts[2];
const float3 s2 = cross(d, e1);
float rt = dot(e2, s2)*invdivisor;
/* compute refined position */
P = P + D*rt;
if(isect->object != OBJECT_NONE) {
# ifdef __OBJECT_MOTION__
Transform tfm = ccl_fetch(sd, ob_tfm);
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
# endif
P = transform_point(&tfm, P);
}
return P;
#else
return P + D*t;
#endif
}
/* Same as above, except that isect->t is assumed to be in object space for instancing */
#ifdef __SUBSURFACE__
# if defined(__KERNEL_CUDA__) && (defined(i386) || defined(_M_IX86))
ccl_device_noinline
# else
ccl_device_inline
# endif
float3 motion_triangle_refine_subsurface(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, float3 verts[3])
{
float3 P = ray->P;
float3 D = ray->D;
float t = isect->t;
# ifdef __INTERSECTION_REFINE__
if(isect->object != OBJECT_NONE) {
# ifdef __OBJECT_MOTION__
Transform tfm = ccl_fetch(sd, ob_itfm);
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
# endif
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D);
D = normalize(D);
}
P = P + D*t;
/* compute refined intersection distance */
const float3 e1 = verts[0] - verts[2];
const float3 e2 = verts[1] - verts[2];
const float3 s1 = cross(D, e2);
const float invdivisor = 1.0f/dot(s1, e1);
const float3 d = P - verts[2];
const float3 s2 = cross(d, e1);
float rt = dot(e2, s2)*invdivisor;
P = P + D*rt;
if(isect->object != OBJECT_NONE) {
# ifdef __OBJECT_MOTION__
Transform tfm = ccl_fetch(sd, ob_tfm);
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
# endif
P = transform_point(&tfm, P);
}
return P;
# else
return P + D*t;
# endif
}
#endif
/* Setup of motion triangle specific parts of ShaderData, moved into this one
* function to more easily share computation of interpolated positions and
* normals */
/* return 3 triangle vertex normals */
ccl_device_noinline void motion_triangle_shader_setup(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, bool subsurface)
{
/* get shader */
2015-05-09 14:34:30 +00:00
ccl_fetch(sd, shader) = kernel_tex_fetch(__tri_shader, ccl_fetch(sd, prim));
/* get motion info */
int numsteps, numverts;
2015-05-09 14:34:30 +00:00
object_motion_info(kg, ccl_fetch(sd, object), &numsteps, &numverts, NULL);
/* figure out which steps we need to fetch and their interpolation factor */
int maxstep = numsteps*2;
2015-05-09 14:34:30 +00:00
int step = min((int)(ccl_fetch(sd, time)*maxstep), maxstep-1);
float t = ccl_fetch(sd, time)*maxstep - step;
/* find attribute */
AttributeElement elem;
2015-05-09 14:34:30 +00:00
int offset = find_attribute_motion(kg, ccl_fetch(sd, object), ATTR_STD_MOTION_VERTEX_POSITION, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* fetch vertex coordinates */
float3 verts[3], next_verts[3];
2015-05-09 14:34:30 +00:00
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, ccl_fetch(sd, prim)));
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);
/* interpolate between steps */
verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
/* compute refined position */
#ifdef __SUBSURFACE__
if(!subsurface)
#endif
2015-05-09 14:34:30 +00:00
ccl_fetch(sd, P) = motion_triangle_refine(kg, sd, isect, ray, verts);
#ifdef __SUBSURFACE__
else
2015-05-09 14:34:30 +00:00
ccl_fetch(sd, P) = motion_triangle_refine_subsurface(kg, sd, isect, ray, verts);
#endif
/* compute face normal */
float3 Ng;
2015-05-09 14:34:30 +00:00
if(ccl_fetch(sd, flag) & SD_NEGATIVE_SCALE_APPLIED)
Ng = normalize(cross(verts[2] - verts[0], verts[1] - verts[0]));
else
Ng = normalize(cross(verts[1] - verts[0], verts[2] - verts[0]));
2015-05-09 14:34:30 +00:00
ccl_fetch(sd, Ng) = Ng;
ccl_fetch(sd, N) = Ng;
/* compute derivatives of P w.r.t. uv */
#ifdef __DPDU__
2015-05-09 14:34:30 +00:00
ccl_fetch(sd, dPdu) = (verts[0] - verts[2]);
ccl_fetch(sd, dPdv) = (verts[1] - verts[2]);
#endif
/* compute smooth normal */
2015-05-09 14:34:30 +00:00
if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL) {
/* find attribute */
AttributeElement elem;
2015-05-09 14:34:30 +00:00
int offset = find_attribute_motion(kg, ccl_fetch(sd, object), ATTR_STD_MOTION_VERTEX_NORMAL, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* fetch vertex coordinates */
float3 normals[3], next_normals[3];
motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step, normals);
motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_normals);
/* interpolate between steps */
normals[0] = (1.0f - t)*normals[0] + t*next_normals[0];
normals[1] = (1.0f - t)*normals[1] + t*next_normals[1];
normals[2] = (1.0f - t)*normals[2] + t*next_normals[2];
/* interpolate between vertices */
2015-05-09 14:34:30 +00:00
float u = ccl_fetch(sd, u);
float v = ccl_fetch(sd, v);
float w = 1.0f - u - v;
2015-05-09 14:34:30 +00:00
ccl_fetch(sd, N) = (u*normals[0] + v*normals[1] + w*normals[2]);
}
}
/* Ray intersection. We simply compute the vertex positions at the given ray
* time and do a ray intersection with the resulting triangle */
ccl_device_inline bool motion_triangle_intersect(KernelGlobals *kg, Intersection *isect,
float3 P, float3 dir, float time, uint visibility, int object, int triAddr)
{
/* primitive index for vertex location lookup */
int prim = kernel_tex_fetch(__prim_index, triAddr);
int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, triAddr): object;
/* get vertex locations for intersection */
float3 verts[3];
motion_triangle_vertices(kg, fobject, prim, time, verts);
/* ray-triangle intersection, unoptimized */
float t, u, v;
if(ray_triangle_intersect_uv(P, dir, isect->t, verts[2], verts[0], verts[1], &u, &v, &t)) {
#ifdef __VISIBILITY_FLAG__
/* visibility flag test. we do it here under the assumption
* that most triangles are culled by node flags */
if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility)
#endif
{
2014-10-11 09:16:31 +00:00
isect->t = t;
isect->u = u;
isect->v = v;
isect->prim = triAddr;
isect->object = object;
isect->type = PRIMITIVE_MOTION_TRIANGLE;
return true;
}
}
return false;
}
/* Special ray intersection routines for subsurface scattering. In that case we
* only want to intersect with primitives in the same object, and if case of
* multiple hits we pick a single random primitive as the intersection point. */
#ifdef __SUBSURFACE__
ccl_device_inline void motion_triangle_intersect_subsurface(
KernelGlobals *kg,
SubsurfaceIntersection *ss_isect,
float3 P,
float3 dir,
float time,
int object,
int triAddr,
float tmax,
uint *lcg_state,
int max_hits)
{
/* primitive index for vertex location lookup */
int prim = kernel_tex_fetch(__prim_index, triAddr);
int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, triAddr): object;
/* get vertex locations for intersection */
float3 verts[3];
motion_triangle_vertices(kg, fobject, prim, time, verts);
/* ray-triangle intersection, unoptimized */
float t, u, v;
if(ray_triangle_intersect_uv(P, dir, tmax, verts[2], verts[0], verts[1], &u, &v, &t)) {
ss_isect->num_hits++;
int hit;
if(ss_isect->num_hits <= max_hits) {
hit = ss_isect->num_hits - 1;
}
else {
/* reservoir sampling: if we are at the maximum number of
* hits, randomly replace element or skip it */
hit = lcg_step_uint(lcg_state) % ss_isect->num_hits;
if(hit >= max_hits)
return;
}
/* record intersection */
Intersection *isect = &ss_isect->hits[hit];
2014-10-11 09:16:31 +00:00
isect->t = t;
isect->u = u;
isect->v = v;
isect->prim = triAddr;
isect->object = object;
isect->type = PRIMITIVE_MOTION_TRIANGLE;
/* Record geometric normal. */
ss_isect->Ng[hit] = normalize(cross(verts[1] - verts[0],
verts[2] - verts[0]));
}
}
#endif
CCL_NAMESPACE_END