blender/intern/cycles/kernel/kernel_bvh.h

381 lines
11 KiB
C
Raw Normal View History

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/*
* "Persistent while-while kernel" used in:
*
* "Understanding the Efficiency of Ray Traversal on GPUs",
* Timo Aila and Samuli Laine,
* Proc. High-Performance Graphics 2009
*/
/* bottom-most stack entry, indicating the end of traversal */
#define ENTRYPOINT_SENTINEL 0x76543210
/* 64 object BVH + 64 mesh BVH + 64 object node splitting */
#define BVH_STACK_SIZE 192
#define BVH_NODE_SIZE 4
#define TRI_NODE_SIZE 3
/* silly workaround for float extended precision that happens when compiling
without sse support on x86, it results in different results for float ops
that you would otherwise expect to compare correctly */
#if !defined(__i386__) || defined(__SSE__)
#define NO_EXTENDED_PRECISION
#else
#define NO_EXTENDED_PRECISION volatile
#endif
__device_inline float3 bvh_inverse_direction(float3 dir)
{
/* avoid divide by zero (ooeps = exp2f(-80.0f)) */
float ooeps = 0.00000000000000000000000082718061255302767487140869206996285356581211090087890625f;
float3 idir;
idir.x = 1.0f/((fabsf(dir.x) > ooeps)? dir.x: copysignf(ooeps, dir.x));
idir.y = 1.0f/((fabsf(dir.y) > ooeps)? dir.y: copysignf(ooeps, dir.y));
idir.z = 1.0f/((fabsf(dir.z) > ooeps)? dir.z: copysignf(ooeps, dir.z));
return idir;
}
__device_inline void bvh_instance_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax)
{
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
*P = transform_point(&tfm, ray->P);
float3 dir = transform_direction(&tfm, ray->D);
float len;
dir = normalize_len(dir, &len);
*idir = bvh_inverse_direction(dir);
if(*t != FLT_MAX)
*t *= len;
}
__device_inline void bvh_instance_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax)
{
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
if(*t != FLT_MAX)
*t *= len(transform_direction(&tfm, 1.0f/(*idir)));
*P = ray->P;
*idir = bvh_inverse_direction(ray->D);
}
/* intersect two bounding boxes */
__device_inline void bvh_node_intersect(KernelGlobals *kg,
bool *traverseChild0, bool *traverseChild1,
bool *closestChild1, int *nodeAddr0, int *nodeAddr1,
float3 P, float3 idir, float t, uint visibility, int nodeAddr)
{
/* fetch node data */
float4 n0xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0);
float4 n1xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1);
float4 nz = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2);
float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3);
/* intersect ray against child nodes */
float3 ood = P * idir;
float c0lox = n0xy.x * idir.x - ood.x;
float c0hix = n0xy.y * idir.x - ood.x;
float c0loy = n0xy.z * idir.y - ood.y;
float c0hiy = n0xy.w * idir.y - ood.y;
float c0loz = nz.x * idir.z - ood.z;
float c0hiz = nz.y * idir.z - ood.z;
NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f);
NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t);
float c1loz = nz.z * idir.z - ood.z;
float c1hiz = nz.w * idir.z - ood.z;
float c1lox = n1xy.x * idir.x - ood.x;
float c1hix = n1xy.y * idir.x - ood.x;
float c1loy = n1xy.z * idir.y - ood.y;
float c1hiy = n1xy.w * idir.y - ood.y;
NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f);
NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t);
/* decide which nodes to traverse next */
#ifdef __VISIBILITY_FLAG__
/* this visibility test gives a 5% performance hit, how to solve? */
*traverseChild0 = (c0max >= c0min) && (__float_as_int(cnodes.z) & visibility);
*traverseChild1 = (c1max >= c1min) && (__float_as_int(cnodes.w) & visibility);
#else
*traverseChild0 = (c0max >= c0min);
*traverseChild1 = (c1max >= c1min);
#endif
*nodeAddr0 = __float_as_int(cnodes.x);
*nodeAddr1 = __float_as_int(cnodes.y);
*closestChild1 = (c1min < c0min);
}
/* Sven Woop's algorithm */
__device_inline void bvh_triangle_intersect(KernelGlobals *kg, Intersection *isect,
float3 P, float3 idir, uint visibility, int object, int triAddr)
{
/* compute and check intersection t-value */
float4 v00 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+0);
float4 v11 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+1);
float3 dir = 1.0f/idir;
float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z;
float invDz = 1.0f/(dir.x*v00.x + dir.y*v00.y + dir.z*v00.z);
float t = Oz * invDz;
if(t > 0.0f && t < isect->t) {
/* compute and check barycentric u */
float Ox = v11.w + P.x*v11.x + P.y*v11.y + P.z*v11.z;
float Dx = dir.x*v11.x + dir.y*v11.y + dir.z*v11.z;
float u = Ox + t*Dx;
if(u >= 0.0f) {
/* compute and check barycentric v */
float4 v22 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+2);
float Oy = v22.w + P.x*v22.x + P.y*v22.y + P.z*v22.z;
float Dy = dir.x*v22.x + dir.y*v22.y + dir.z*v22.z;
float v = Oy + t*Dy;
if(v >= 0.0f && u + v <= 1.0f) {
#ifdef __VISIBILITY_FLAG__
/* visibility flag test. we do it here under the assumption
that most triangles are culled by node flags */
if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility)
#endif
{
/* record intersection */
isect->prim = triAddr;
isect->object = object;
isect->u = u;
isect->v = v;
isect->t = t;
}
}
}
}
}
__device_inline bool scene_intersect(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect)
{
/* traversal stack in CUDA thread-local memory */
int traversalStack[BVH_STACK_SIZE];
traversalStack[0] = ENTRYPOINT_SENTINEL;
/* traversal variables in registers */
int stackPtr = 0;
int nodeAddr = kernel_data.bvh.root;
/* ray parameters in registers */
const float tmax = ray->t;
float3 P = ray->P;
float3 idir = bvh_inverse_direction(ray->D);
int object = ~0;
isect->t = tmax;
isect->object = ~0;
isect->prim = ~0;
isect->u = 0.0f;
isect->v = 0.0f;
/* traversal loop */
do {
do
{
/* traverse internal nodes */
while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL)
{
bool traverseChild0, traverseChild1, closestChild1;
int nodeAddrChild1;
bvh_node_intersect(kg, &traverseChild0, &traverseChild1,
&closestChild1, &nodeAddr, &nodeAddrChild1,
P, idir, isect->t, visibility, nodeAddr);
if(traverseChild0 != traverseChild1) {
/* one child was intersected */
if(traverseChild1) {
nodeAddr = nodeAddrChild1;
}
}
else {
if(!traverseChild0) {
/* neither child was intersected */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
else {
/* both children were intersected, push the farther one */
if(closestChild1) {
int tmp = nodeAddr;
nodeAddr = nodeAddrChild1;
nodeAddrChild1 = tmp;
}
++stackPtr;
traversalStack[stackPtr] = nodeAddrChild1;
}
}
}
/* if node is leaf, fetch triangle list */
if(nodeAddr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1));
int primAddr = __float_as_int(leaf.x);
#ifdef __INSTANCING__
if(primAddr >= 0) {
#endif
int primAddr2 = __float_as_int(leaf.y);
/* pop */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
/* triangle intersection */
while(primAddr < primAddr2) {
/* intersect ray against triangle */
bvh_triangle_intersect(kg, isect, P, idir, visibility, object, primAddr);
/* shadow ray early termination */
if(visibility == PATH_RAY_SHADOW_OPAQUE && isect->prim != ~0)
return true;
primAddr++;
}
#ifdef __INSTANCING__
}
else {
/* instance push */
object = kernel_tex_fetch(__prim_object, -primAddr-1);
bvh_instance_push(kg, object, ray, &P, &idir, &isect->t, tmax);
++stackPtr;
traversalStack[stackPtr] = ENTRYPOINT_SENTINEL;
nodeAddr = kernel_tex_fetch(__object_node, object);
}
#endif
}
} while(nodeAddr != ENTRYPOINT_SENTINEL);
#ifdef __INSTANCING__
if(stackPtr >= 0) {
kernel_assert(object != ~0);
/* instance pop */
bvh_instance_pop(kg, object, ray, &P, &idir, &isect->t, tmax);
object = ~0;
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
#endif
} while(nodeAddr != ENTRYPOINT_SENTINEL);
return (isect->prim != ~0);
}
__device_inline float3 ray_offset(float3 P, float3 Ng)
{
#ifdef __INTERSECTION_REFINE__
const float epsilon_f = 1e-5f;
const int epsilon_i = 32;
float3 res;
/* x component */
if(fabsf(P.x) < epsilon_f) {
res.x = P.x + Ng.x*epsilon_f;
}
else {
uint ix = __float_as_uint(P.x);
ix += ((ix ^ __float_as_uint(Ng.x)) >> 31)? -epsilon_i: epsilon_i;
res.x = __uint_as_float(ix);
}
/* y component */
if(fabsf(P.y) < epsilon_f) {
res.y = P.y + Ng.y*epsilon_f;
}
else {
uint iy = __float_as_uint(P.y);
iy += ((iy ^ __float_as_uint(Ng.y)) >> 31)? -epsilon_i: epsilon_i;
res.y = __uint_as_float(iy);
}
/* z component */
if(fabsf(P.z) < epsilon_f) {
res.z = P.z + Ng.z*epsilon_f;
}
else {
uint iz = __float_as_uint(P.z);
iz += ((iz ^ __float_as_uint(Ng.z)) >> 31)? -epsilon_i: epsilon_i;
res.z = __uint_as_float(iz);
}
return res;
#else
const float epsilon_f = 1e-4f;
return P + epsilon_f*Ng;
#endif
}
__device_inline float3 bvh_triangle_refine(KernelGlobals *kg, const Intersection *isect, const Ray *ray)
{
float3 P = ray->P;
float3 D = ray->D;
float t = isect->t;
#ifdef __INTERSECTION_REFINE__
if(isect->object != ~0) {
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D*t);
D = normalize_len(D, &t);
}
P = P + D*t;
float4 v00 = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+0);
float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z;
float invDz = 1.0f/(D.x*v00.x + D.y*v00.y + D.z*v00.z);
float rt = Oz * invDz;
P = P + D*rt;
if(isect->object != ~0) {
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
P = transform_point(&tfm, P);
}
return P;
#else
return P + D*t;
#endif
}
CCL_NAMESPACE_END