blender/release/scripts/modules/rigify.py

803 lines
24 KiB
Python
Raw Normal View History

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
from functools import reduce
from Mathutils import Vector
# TODO, have these in a more general module
from rna_prop_ui import rna_idprop_ui_get, rna_idprop_ui_prop_get
empty_layer = [False] * 16
def auto_class(slots, name="ContainerClass"):
return type(name, (object,), {"__slots__":tuple(slots)})
def auto_class_instance(slots, name="ContainerClass"):
return auto_class(slots, name)()
def bone_class_instance(obj, slots, name="BoneContainer"):
for member in slots[:]:
slots.append(member + "_b") # bone bone
slots.append(member + "_p") # pose bone
slots.append(member + "_e") # edit bone
slots.extend(["obj", "update"])
instance = auto_class_instance(slots, name)
def update():
'''
Re-Assigns bones from the blender data
'''
arm = obj.data
bbones = arm.bones
pbones = obj.pose.bones
ebones = arm.edit_bones
for member in slots:
if member in ("update", "obj"):
continue
if not member[-2] == "_":
name = getattr(instance, member, None)
if name is not None:
setattr(instance, member + "_b", bbones.get(name, None))
setattr(instance, member + "_p", pbones.get(name, None))
setattr(instance, member + "_e", ebones.get(name, None))
instance.update = update
return instance
def gen_none(obj, orig_bone_name):
pass
def get_bone_data(obj, bone_name):
arm = obj.data
pbone = obj.pose.bones[bone_name]
if obj.mode == 'EDIT':
bone = arm.edit_bones[bone_name]
else:
bone = arm.bones[bone_name]
return arm, pbone, bone
def bone_basename(name):
return name.split(".")[0]
def copy_bone_simple(arm, from_bone, name):
ebone = arm.edit_bones[from_bone]
ebone_new = arm.edit_bones.new(name)
ebone_new.head = ebone.head
ebone_new.tail = ebone.tail
ebone_new.roll = ebone.roll
return ebone_new
def add_stretch_to(obj, from_name, to_name, name):
'''
Adds a bone that stretches from one to another
'''
mode_orig = obj.mode
bpy.ops.object.mode_set(mode='EDIT')
arm = obj.data
stretch_ebone = arm.edit_bones.new(name)
stretch_name = stretch_ebone.name
del name
head = stretch_ebone.head = arm.edit_bones[from_name].head.copy()
#tail = stretch_ebone.tail = arm.edit_bones[to_name].head.copy()
# annoying exception for zero length bones, since its using stretch_to the rest pose doesnt really matter
#if (head - tail).length < 0.1:
if 1:
tail = stretch_ebone.tail = arm.edit_bones[from_name].tail.copy()
# Now for the constraint
bpy.ops.object.mode_set(mode='OBJECT')
from_pbone = obj.pose.bones[from_name]
to_pbone = obj.pose.bones[to_name]
stretch_pbone = obj.pose.bones[stretch_name]
con = stretch_pbone.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = from_name
con = stretch_pbone.constraints.new('STRETCH_TO')
con.target = obj
con.subtarget = to_name
con.original_length = (head - tail).length
con.keep_axis = 'PLANE_X'
con.volume = 'NO_VOLUME'
bpy.ops.object.mode_set(mode=mode_orig)
def add_pole_target_bone(obj, base_name, name, mode='CROSS'):
'''
Does not actually create a poll target, just the bone to use as a poll target
'''
mode_orig = obj.mode
bpy.ops.object.mode_set(mode='EDIT')
arm = obj.data
poll_ebone = arm.edit_bones.new(base_name + "_poll")
base_ebone = arm.edit_bones[base_name]
poll_name = poll_ebone.name
parent_ebone = base_ebone.parent
base_head = base_ebone.head.copy()
base_tail = base_ebone.tail.copy()
base_dir = base_head - base_tail
parent_head = parent_ebone.head.copy()
parent_tail = parent_ebone.tail.copy()
parent_dir = parent_head - parent_tail
distance = (base_dir.length + parent_dir.length)
if mode == 'CROSS':
offset = base_dir.copy().normalize() - parent_dir.copy().normalize()
offset.length = distance
else:
offset = Vector(0,0,0)
if mode[0]=="+":
val = distance
else:
val = -distance
setattr(offset, mode[1].lower(), val)
poll_ebone.head = base_head + offset
poll_ebone.tail = base_head + (offset * (1.0 - (1.0 / 4.0)))
bpy.ops.object.mode_set(mode=mode_orig)
return poll_name
def gen_finger(obj, orig_bone_name):
# *** EDITMODE
# get assosiated data
arm, orig_pbone, orig_ebone = get_bone_data(obj, orig_bone_name)
obj.animation_data_create() # needed if its a new armature with no keys
arm.layer[0] = arm.layer[8] = True
children = orig_pbone.children_recursive
tot_len = reduce(lambda f, pbone: f + pbone.bone.length, children, orig_pbone.bone.length)
base_name = bone_basename(orig_pbone.name)
# first make a new bone at the location of the finger
control_ebone = arm.edit_bones.new(base_name)
control_bone_name = control_ebone.name # we dont know if we get the name requested
# Place the finger bone
head = orig_ebone.head.copy()
tail = orig_ebone.tail.copy()
control_ebone.head = head
control_ebone.tail = head + ((tail - head).normalize() * tot_len)
control_ebone.roll = orig_ebone.roll
# now add bones inbetween this and its children recursively
# switching modes so store names only!
children = [pbone.name for pbone in children]
# set an alternate layer for driver bones
other_layer = empty_layer[:]
other_layer[8] = True
driver_bone_pairs = []
for child_bone_name in children:
arm, pbone_child, child_ebone = get_bone_data(obj, child_bone_name)
# finger.02 --> finger_driver.02
driver_bone_name = child_bone_name.split('.')
driver_bone_name = driver_bone_name[0] + "_driver." + ".".join(driver_bone_name[1:])
driver_ebone = arm.edit_bones.new(driver_bone_name)
driver_bone_name = driver_ebone.name # cant be too sure!
driver_ebone.layer = other_layer
new_len = pbone_child.bone.length / 2.0
head = child_ebone.head.copy()
tail = child_ebone.tail.copy()
driver_ebone.head = head
driver_ebone.tail = head + ((tail - head).normalize() * new_len)
driver_ebone.roll = child_ebone.roll
# Insert driver_ebone in the chain without connected parents
driver_ebone.connected = False
driver_ebone.parent = child_ebone.parent
child_ebone.connected = False
child_ebone.parent = driver_ebone
# Add the drivers to these when in posemode.
driver_bone_pairs.append((child_bone_name, driver_bone_name))
del control_ebone
# *** POSEMODE
bpy.ops.object.mode_set(mode='OBJECT')
arm, orig_pbone, orig_bone = get_bone_data(obj, orig_bone_name)
arm, control_pbone, control_bone= get_bone_data(obj, control_bone_name)
# only allow Y scale
control_pbone.lock_scale = (True, False, True)
control_pbone["bend_ratio"] = 0.4
prop = rna_idprop_ui_prop_get(control_pbone, "bend_ratio", create=True)
prop["soft_min"] = 0.0
prop["soft_max"] = 1.0
con = orig_pbone.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = control_bone_name
con = orig_pbone.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = control_bone_name
# setup child drivers on each new smaller bone added. assume 2 for now.
# drives the bones
controller_path = control_pbone.path_to_id() # 'pose.bones["%s"]' % control_bone_name
i = 0
for child_bone_name, driver_bone_name in driver_bone_pairs:
# XXX - todo, any number
if i==2:
break
arm, driver_pbone, driver_bone = get_bone_data(obj, driver_bone_name)
driver_pbone.rotation_mode = 'YZX'
fcurve_driver = driver_pbone.driver_add("rotation_euler", 0)
#obj.driver_add('pose.bones["%s"].scale', 1)
#obj.animation_data.drivers[-1] # XXX, WATCH THIS
driver = fcurve_driver.driver
# scale target
tar = driver.targets.new()
tar.name = "scale"
tar.id_type = 'OBJECT'
tar.id = obj
tar.array_index = 1 # Y scale
tar.rna_path = controller_path + '.scale'
# bend target
tar = driver.targets.new()
tar.name = "br"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + '["bend_ratio"]'
# XXX - todo, any number
if i==0:
driver.expression = '(-scale+1.0)*pi*2.0*(1.0-br)'
elif i==1:
driver.expression = '(-scale+1.0)*pi*2.0*br'
arm, child_pbone, child_bone = get_bone_data(obj, child_bone_name)
# only allow X rotation
driver_pbone.lock_rotation = child_pbone.lock_rotation = (False, True, True)
i += 1
def gen_delta(obj, delta_name):
'''
Use this bone to define a delta thats applied to its child in pose mode.
'''
arm = obj.data
mode_orig = obj.mode
bpy.ops.object.mode_set(mode='OBJECT')
delta_pbone = obj.pose.bones[delta_name]
children = delta_pbone.children
if len(children) != 1:
print("only 1 child supported for delta")
child_name = children[0].name
arm, child_pbone, child_bone = get_bone_data(obj, child_name)
delta_phead = delta_pbone.head.copy()
delta_ptail = delta_pbone.tail.copy()
delta_pmatrix = delta_pbone.matrix.copy()
child_phead = child_pbone.head.copy()
child_ptail = child_pbone.tail.copy()
child_pmatrix = child_pbone.matrix.copy()
children = delta_pbone.children
bpy.ops.object.mode_set(mode='EDIT')
delta_ebone = arm.edit_bones[delta_name]
child_ebone = arm.edit_bones[child_name]
delta_head = delta_ebone.head.copy()
delta_tail = delta_ebone.tail.copy()
# arm, parent_pbone, parent_bone = get_bone_data(obj, delta_name)
child_head = child_ebone.head.copy()
child_tail = child_ebone.tail.copy()
arm.edit_bones.remove(delta_ebone)
del delta_ebone # cant use thz
bpy.ops.object.mode_set(mode='OBJECT')
# Move the child bone to the deltas location
obj.animation_data_create()
child_pbone = obj.pose.bones[child_name]
# ------------------- drivers
child_pbone.rotation_mode = 'XYZ'
rot = delta_pmatrix.invert().rotationPart() * child_pmatrix.rotationPart()
rot = rot.invert().toEuler()
fcurve_drivers = child_pbone.driver_add("rotation_euler", -1)
for i, fcurve_driver in enumerate(fcurve_drivers):
driver = fcurve_driver.driver
driver.type = 'AVERAGE'
#mod = fcurve_driver.modifiers.new('GENERATOR')
mod = fcurve_driver.modifiers[0]
mod.poly_order = 1
mod.coefficients[0] = rot[i]
mod.coefficients[1] = 0.0
# tricky, find the transform to drive the bone to this location.
delta_head_offset = child_pmatrix.rotationPart() * (delta_phead - child_phead)
fcurve_drivers = child_pbone.driver_add("location", -1)
for i, fcurve_driver in enumerate(fcurve_drivers):
driver = fcurve_driver.driver
driver.type = 'AVERAGE'
#mod = fcurve_driver.modifiers.new('GENERATOR')
mod = fcurve_driver.modifiers[0]
mod.poly_order = 1
mod.coefficients[0] = delta_head_offset[i]
mod.coefficients[1] = 0.0
# arm, parent_pbone, parent_bone = get_bone_data(obj, delta_name)
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.object.mode_set(mode=mode_orig)
def gen_arm(obj, orig_bone_name):
"""
the bone with the 'arm' property is the upper arm, this assumes a chain as follows.
[shoulder, upper_arm, forearm, hand]
...where this bone is 'upper_arm'
there are 3 chains
- Original
- IK, MCH-%s_ik
- IKSwitch, MCH-%s ()
"""
# Since there are 3 chains, this gets confusing so divide into 3 chains
# Initialize container classes for convenience
mt = bone_class_instance(obj, ["shoulder", "arm", "forearm", "hand"])
ik = bone_class_instance(obj, ["arm", "forearm", "pole", "hand"])
sw = bone_class_instance(obj, ["socket", "shoulder", "arm", "forearm", "hand"])
def chain_init():
'''
Sanity check and return the arm as a list of bone names.
'''
# do a sanity check
mt.arm = orig_bone_name
mt.update()
mt.shoulder_p = mt.arm_p.parent
mt.shoulder = mt.shoulder_p.name
if not mt.shoulder_p:
print("could not find 'arm' parent, skipping:", orig_bone_name)
return
# We could have some bones attached, find the bone that has this as its 2nd parent
hands = []
for pbone in obj.pose.bones:
index = pbone.parent_index(mt.arm_p)
if index == 2:
hands.append(pbone)
if len(hands) > 1:
print("more then 1 hand found on:", orig_bone_name)
return
# first add the 2 new bones
mt.hand_p = hands[0]
mt.hand = mt.hand_p.name
mt.forearm_p = mt.hand_p.parent
mt.forearm = mt.forearm_p.name
arm = obj.data
def chain_ik(prefix="MCH-%s_ik"):
mt.update()
# Add the edit bones
ik.hand_e = copy_bone_simple(arm, mt.hand, prefix % mt.hand)
ik.hand = ik.hand_e.name
ik.arm_e = copy_bone_simple(arm, mt.arm, prefix % mt.arm)
ik.arm = ik.arm_e.name
ik.forearm_e = copy_bone_simple(arm, mt.forearm, prefix % mt.forearm)
ik.forearm = ik.forearm_e.name
ik.arm_e.parent = mt.arm_e.parent
ik.forearm_e.connected = mt.arm_e.connected
ik.forearm_e.parent = ik.arm_e
ik.forearm_e.connected = True
# Add the bone used for the arms poll target
ik.pole = add_pole_target_bone(obj, mt.forearm, "elbow_poll", mode='+Z')
bpy.ops.object.mode_set(mode='OBJECT')
ik.update()
con = ik.forearm_p.constraints.new('IK')
con.target = obj
con.subtarget = ik.hand
con.pole_target = obj
con.pole_subtarget = ik.pole
con.use_tail = True
con.use_stretch = True
con.use_target = True
con.use_rotation = False
con.chain_length = 2
con.pole_angle = -90.0 # XXX, RAD2DEG
# ID Propery on the hand for IK/FK switch
prop = rna_idprop_ui_prop_get(ik.hand_p, "ik", create=True)
ik.hand_p["ik"] = 0.5
prop["soft_min"] = 0.0
prop["soft_max"] = 1.0
bpy.ops.object.mode_set(mode='EDIT')
ik.arm = ik.arm
ik.forearm = ik.forearm
ik.hand = ik.hand
ik.pole = ik.pole
def chain_switch(prefix="MCH-%s"):
sw.shoulder_e = copy_bone_simple(arm, mt.shoulder, prefix % mt.shoulder)
sw.shoulder = sw.shoulder_e.name
sw.arm_e = copy_bone_simple(arm, mt.arm, prefix % mt.arm)
sw.arm = sw.arm_e.name
sw.arm_e.parent = sw.arm_e
sw.arm_e.connected = arm.edit_bones[mt.shoulder].connected
sw.forearm_e = copy_bone_simple(arm, mt.forearm, prefix % mt.forearm)
sw.forearm = sw.forearm_e.name
sw.forearm_e.parent = sw.arm_e
sw.forearm_e.connected = arm.edit_bones[mt.forearm].connected
sw.hand_e = copy_bone_simple(arm, mt.hand, prefix % mt.hand)
sw.hand = sw.hand_e.name
sw.hand_e.parent = sw.forearm_e
sw.hand_e.connected = arm.edit_bones[mt.hand].connected
bpy.ops.object.mode_set(mode='OBJECT')
# Add constraints
sw.update()
#dummy, ik.arm, ik.forearm, ik.hand, ik.pole = ik_chain_tuple
ik_driver_path = obj.pose.bones[ik.hand].path_to_id() + '["ik"]'
def ik_fk_driver(con):
'''
3 bones use this for ik/fk switching
'''
fcurve = con.driver_add("influence", 0)
driver = fcurve.driver
tar = driver.targets.new()
driver.type = 'AVERAGE'
tar.name = "ik"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = ik_driver_path
# ***********
con = sw.arm_p.constraints.new('COPY_ROTATION')
con.name = "FK"
con.target = obj
con.subtarget = mt.arm
con = sw.arm_p.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = ik.arm
con.influence = 0.5
ik_fk_driver(con)
# ***********
con = sw.forearm_p.constraints.new('COPY_ROTATION')
con.name = "FK"
con.target = obj
con.subtarget = mt.forearm
con = sw.forearm_p.constraints.new('COPY_ROTATION')
con.name = "IK"
con.target = obj
con.subtarget = ik.forearm
con.influence = 0.5
ik_fk_driver(con)
# ***********
con = sw.hand_p.constraints.new('COPY_ROTATION')
con.name = "FK"
con.target = obj
con.subtarget = mt.hand
con = sw.hand_p.constraints.new('COPY_ROTATION')
con.name = "IK"
con.target = obj
con.subtarget = ik.hand
con.influence = 0.5
ik_fk_driver(con)
add_stretch_to(obj, sw.forearm, ik.pole, "VIS-elbow_ik_poll")
add_stretch_to(obj, sw.hand, ik.hand, "VIS-hand_ik")
bpy.ops.object.mode_set(mode='EDIT')
def chain_shoulder(prefix="MCH-%s"):
sw.socket_e = copy_bone_simple(arm, mt.arm, (prefix % mt.arm) + "_socket")
sw.socket = sw.socket_e.name
sw.socket_e.tail = arm.edit_bones[mt.shoulder].tail
bpy.ops.object.mode_set(mode='OBJECT')
con = mt.arm_p.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = sw.socket
bpy.ops.object.mode_set(mode='EDIT')
chain_init()
chain_ik()
chain_switch()
# add the shoulder
chain_shoulder()
# Shoulder with its delta and hinge.
def gen_palm(obj, orig_bone_name):
arm, palm_pbone, palm_ebone = get_bone_data(obj, orig_bone_name)
children = [ebone.name for ebone in palm_ebone.children]
children.sort() # simply assume the pinky has the lowest name
# Make a copy of the pinky
control_ebone = copy_bone_simple(arm, children[0], "palm_control")
control_name = control_ebone.name
offset = (arm.edit_bones[children[0]].head - arm.edit_bones[children[1]].head)
control_ebone.head += offset
control_ebone.tail += offset
bpy.ops.object.mode_set(mode='OBJECT')
arm, control_pbone, control_ebone = get_bone_data(obj, control_name)
arm, pinky_pbone, pinky_ebone = get_bone_data(obj, children[0])
control_pbone.rotation_mode = 'YZX'
control_pbone.lock_rotation = False, True, True
driver_fcurves = pinky_pbone.driver_add("rotation_euler")
controller_path = control_pbone.path_to_id()
# add custom prop
control_pbone["spread"] = 0.0
prop = rna_idprop_ui_prop_get(control_pbone, "spread", create=True)
prop["soft_min"] = -1.0
prop["soft_max"] = 1.0
# *****
driver = driver_fcurves[0].driver
driver.type = 'AVERAGE'
tar = driver.targets.new()
tar.name = "x"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + ".rotation_euler[0]"
# *****
driver = driver_fcurves[1].driver
driver.expression = "-x/4.0"
tar = driver.targets.new()
tar.name = "x"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + ".rotation_euler[0]"
# *****
driver = driver_fcurves[2].driver
driver.expression = "(1.0-cos(x))-s"
tar = driver.targets.new()
tar.name = "x"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + ".rotation_euler[0]"
tar = driver.targets.new()
tar.name = "s"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = controller_path + '["spread"]'
for i, child_name in enumerate(children):
child_pbone = obj.pose.bones[child_name]
child_pbone.rotation_mode = 'YZX'
if child_name != children[-1] and child_name != children[0]:
# this is somewhat arbitrary but seems to look good
inf = i / (len(children)+1)
inf = 1.0 - inf
inf = ((inf * inf) + inf) / 2.0
# used for X/Y constraint
inf_minor = inf * inf
con = child_pbone.constraints.new('COPY_ROTATION')
con.name = "Copy Z Rot"
con.target = obj
con.subtarget = children[0] # also pinky_pbone
con.owner_space = con.target_space = 'LOCAL'
con.use_x, con.use_y, con.use_z = False, False, True
con.influence = inf
con = child_pbone.constraints.new('COPY_ROTATION')
con.name = "Copy XY Rot"
con.target = obj
con.subtarget = children[0] # also pinky_pbone
con.owner_space = con.target_space = 'LOCAL'
con.use_x, con.use_y, con.use_z = True, True, False
con.influence = inf_minor
child_pbone = obj.pose.bones[children[-1]]
child_pbone.rotation_mode = 'QUATERNION'
gen_table = {
"":gen_none, \
"finger":gen_finger, \
"delta":gen_delta, \
"arm":gen_arm, \
"palm":gen_palm, \
}
def generate_rig(context, ob):
# add_stretch_to(ob, "a", "b", "c")
bpy.ops.object.mode_set(mode='OBJECT')
# copy object and data
ob.selected = False
ob_new = ob.copy()
ob_new.data = ob.data.copy()
scene = context.scene
scene.objects.link(ob_new)
scene.objects.active = ob_new
ob_new.selected = True
# enter armature editmode
for pbone_name in ob_new.pose.bones.keys():
bone_type = ob_new.pose.bones[pbone_name].get("type", "")
try:
func = gen_table[bone_type]
except KeyError:
print("\tunknown type '%s', bone '%s'" % (bone_type, pbone_name))
# Toggle editmode so the pose data is always up to date
bpy.ops.object.mode_set(mode='EDIT')
func(ob_new, pbone_name)
bpy.ops.object.mode_set(mode='OBJECT')
# needed to update driver deps
# context.scene.update()
if __name__ == "__main__":
generate_rig(bpy.context, bpy.context.object)