blender/extern/solid/include/MT/Vector3.h

284 lines
6.8 KiB
C
Raw Normal View History

/*
* SOLID - Software Library for Interference Detection
*
* Copyright (C) 2001-2003 Dtecta. All rights reserved.
*
* This library may be distributed under the terms of the Q Public License
* (QPL) as defined by Trolltech AS of Norway and appearing in the file
* LICENSE.QPL included in the packaging of this file.
*
* This library may be distributed and/or modified under the terms of the
* GNU General Public License (GPL) version 2 as published by the Free Software
* Foundation and appearing in the file LICENSE.GPL included in the
* packaging of this file.
*
* This library is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Commercial use or any other use of this library not covered by either
* the QPL or the GPL requires an additional license from Dtecta.
* Please contact info@dtecta.com for enquiries about the terms of commercial
* use of this library.
*/
#ifndef VECTOR3_H
#define VECTOR3_H
#if defined (__sgi)
#include <assert.h>
#else
#include <cassert>
#endif
#include "Tuple3.h"
namespace MT {
template <typename Scalar>
class Vector3 : public Tuple3<Scalar> {
public:
Vector3() {}
template <typename Scalar2>
explicit Vector3(const Scalar2 *v) : Tuple3<Scalar>(v) {}
template <typename Scalar2>
Vector3(const Scalar2& x, const Scalar2& y, const Scalar2& z)
: Tuple3<Scalar>(x, y, z)
{}
Vector3<Scalar>& operator+=(const Vector3<Scalar>& v)
{
2004-06-04 03:04:56 +00:00
this->m_co[0] += v[0]; this->m_co[1] += v[1]; this->m_co[2] += v[2];
return *this;
}
Vector3<Scalar>& operator-=(const Vector3<Scalar>& v)
{
2004-06-04 03:04:56 +00:00
this->m_co[0] -= v[0]; this->m_co[1] -= v[1]; this->m_co[2] -= v[2];
return *this;
}
Vector3<Scalar>& operator*=(const Scalar& s)
{
2004-06-04 03:04:56 +00:00
this->m_co[0] *= s; this->m_co[1] *= s; this->m_co[2] *= s;
return *this;
}
Vector3<Scalar>& operator/=(const Scalar& s)
{
assert(s != Scalar(0.0));
return *this *= Scalar(1.0) / s;
}
Scalar dot(const Vector3<Scalar>& v) const
{
2004-06-04 03:04:56 +00:00
return this->m_co[0] * v[0] + this->m_co[1] * v[1] + this->m_co[2] * v[2];
}
Scalar length2() const
{
return dot(*this);
}
Scalar length() const
{
return Scalar_traits<Scalar>::sqrt(length2());
}
Scalar distance2(const Vector3<Scalar>& v) const
{
return (v - *this).length2();
}
Scalar distance(const Vector3<Scalar>& v) const
{
return (v - *this).length();
}
Vector3<Scalar>& normalize()
{
return *this /= length();
}
Vector3<Scalar> normalized() const
{
return *this / length();
}
Scalar angle(const Vector3<Scalar>& v) const
{
Scalar s = Scalar_traits<Scalar>::sqrt(length2() * v.length2());
assert(s != Scalar(0.0));
return Scalar_traits<Scalar>::acos(dot(v) / s);
}
Vector3<Scalar> absolute() const
{
2004-06-04 03:04:56 +00:00
return Vector3<Scalar>(Scalar_traits<Scalar>::abs(this->m_co[0]),
Scalar_traits<Scalar>::abs(this->m_co[1]),
Scalar_traits<Scalar>::abs(this->m_co[2]));
}
Vector3<Scalar> cross(const Vector3<Scalar>& v) const
{
2004-06-04 03:04:56 +00:00
return Vector3<Scalar>(this->m_co[1] * v[2] - this->m_co[2] * v[1],
this->m_co[2] * v[0] - this->m_co[0] * v[2],
this->m_co[0] * v[1] - this->m_co[1] * v[0]);
}
Scalar triple(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2) const
{
2004-06-04 03:04:56 +00:00
return this->m_co[0] * (v1[1] * v2[2] - v1[2] * v2[1]) +
this->m_co[1] * (v1[2] * v2[0] - v1[0] * v2[2]) +
this->m_co[2] * (v1[0] * v2[1] - v1[1] * v2[0]);
}
int minAxis() const
{
2004-06-04 03:04:56 +00:00
return this->m_co[0] < this->m_co[1] ? (this->m_co[0] < this->m_co[2] ? 0 : 2) : (this->m_co[1] < this->m_co[2] ? 1 : 2);
}
int maxAxis() const
{
2004-06-04 03:04:56 +00:00
return this->m_co[0] < this->m_co[1] ? (this->m_co[1] < this->m_co[2] ? 2 : 1) : (this->m_co[0] < this->m_co[2] ? 2 : 0);
}
int furthestAxis() const
{
return absolute().minAxis();
}
int closestAxis() const
{
return absolute().maxAxis();
}
Vector3<Scalar> lerp(const Vector3<Scalar>& v, const Scalar& t) const
{
2004-06-04 03:04:56 +00:00
return Vector3<Scalar>(this->m_co[0] + (v[0] - this->m_co[0]) * t,
this->m_co[1] + (v[1] - this->m_co[1]) * t,
this->m_co[2] + (v[2] - this->m_co[2]) * t);
}
static Vector3<Scalar> random()
{
Scalar z = Scalar(2.0) * Scalar_traits<Scalar>::random() - Scalar(1.0);
Scalar r = Scalar_traits<Scalar>::sqrt(Scalar(1.0) - z * z);
Scalar t = Scalar_traits<Scalar>::TwoTimesPi() * Scalar_traits<Scalar>::random();
return Vector3<Scalar>(r * Scalar_traits<Scalar>::cos(t),
r * Scalar_traits<Scalar>::sin(t),
z);
}
};
template <typename Scalar>
inline Vector3<Scalar>
operator+(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2)
{
return Vector3<Scalar>(v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]);
}
template <typename Scalar>
inline Vector3<Scalar>
operator-(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2)
{
return Vector3<Scalar>(v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]);
}
template <typename Scalar>
inline Vector3<Scalar>
operator-(const Vector3<Scalar>& v)
{
return Vector3<Scalar>(-v[0], -v[1], -v[2]);
}
template <typename Scalar>
inline Vector3<Scalar>
operator*(const Vector3<Scalar>& v, const Scalar& s)
{
return Vector3<Scalar>(v[0] * s, v[1] * s, v[2] * s);
}
template <typename Scalar>
inline Vector3<Scalar>
operator*(const Scalar& s, const Vector3<Scalar>& v)
{
return v * s;
}
template <typename Scalar>
inline Vector3<Scalar>
operator/(const Vector3<Scalar>& v, const Scalar& s)
{
assert(s != Scalar(0.0));
return v * (Scalar(1.0) / s);
}
template <typename Scalar>
inline Scalar
dot(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2)
{
return v1.dot(v2);
}
template <typename Scalar>
inline Scalar
length2(const Vector3<Scalar>& v)
{
return v.length2();
}
template <typename Scalar>
inline Scalar
length(const Vector3<Scalar>& v)
{
return v.length();
}
template <typename Scalar>
inline Scalar
distance2(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2)
{
return v1.distance2(v2);
}
template <typename Scalar>
inline Scalar
distance(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2)
{
return v1.distance(v2);
}
template <typename Scalar>
inline Scalar
angle(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2)
{
return v1.angle(v2);
}
template <typename Scalar>
inline Vector3<Scalar>
cross(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2)
{
return v1.cross(v2);
}
template <typename Scalar>
inline Scalar
triple(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2, const Vector3<Scalar>& v3)
{
return v1.triple(v2, v3);
}
template <typename Scalar>
inline Vector3<Scalar>
lerp(const Vector3<Scalar>& v1, const Vector3<Scalar>& v2, const Scalar& t)
{
return v1.lerp(v2, t);
}
}
#endif