blender/source/gameengine/Ketsji/KX_Light.cpp

396 lines
11 KiB
C++
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
2002-10-12 11:37:38 +00:00
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
2002-10-12 11:37:38 +00:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
2002-10-12 11:37:38 +00:00
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
2002-10-12 11:37:38 +00:00
*/
2011-02-25 13:35:59 +00:00
/** \file gameengine/Ketsji/KX_Light.cpp
* \ingroup ketsji
*/
#if defined(WIN32) && !defined(FREE_WINDOWS)
2002-10-12 11:37:38 +00:00
#pragma warning (disable : 4786)
#endif
#include "GL/glew.h"
2002-10-12 11:37:38 +00:00
#include "KX_Light.h"
#include "KX_Camera.h"
#include "RAS_IRasterizer.h"
2002-10-12 11:37:38 +00:00
#include "RAS_IRenderTools.h"
#include "KX_PyMath.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "GPU_material.h"
2002-10-12 11:37:38 +00:00
KX_LightObject::KX_LightObject(void* sgReplicationInfo,SG_Callbacks callbacks,
class RAS_IRenderTools* rendertools,
const RAS_LightObject& lightobj,
bool glsl)
: KX_GameObject(sgReplicationInfo,callbacks),
m_rendertools(rendertools)
2002-10-12 11:37:38 +00:00
{
m_lightobj = lightobj;
m_lightobj.m_scene = sgReplicationInfo;
m_lightobj.m_light = this;
2002-10-12 11:37:38 +00:00
m_rendertools->AddLight(&m_lightobj);
m_glsl = glsl;
m_blenderscene = ((KX_Scene*)sgReplicationInfo)->GetBlenderScene();
2002-10-12 11:37:38 +00:00
};
KX_LightObject::~KX_LightObject()
{
GPULamp *lamp;
if ((lamp = GetGPULamp())) {
float obmat[4][4] = {{0}};
GPU_lamp_update(lamp, 0, 0, obmat);
}
2002-10-12 11:37:38 +00:00
m_rendertools->RemoveLight(&m_lightobj);
}
CValue* KX_LightObject::GetReplica()
{
KX_LightObject* replica = new KX_LightObject(*this);
replica->ProcessReplica();
2002-10-12 11:37:38 +00:00
replica->m_lightobj.m_light = replica;
2002-10-12 11:37:38 +00:00
m_rendertools->AddLight(&replica->m_lightobj);
2002-10-12 11:37:38 +00:00
return replica;
}
bool KX_LightObject::ApplyLight(KX_Scene *kxscene, int oblayer, int slot)
{
KX_Scene* lightscene = (KX_Scene*)m_lightobj.m_scene;
float vec[4];
int scenelayer = ~0;
if (kxscene && kxscene->GetBlenderScene())
scenelayer = kxscene->GetBlenderScene()->lay;
/* only use lights in the same layer as the object */
if (!(m_lightobj.m_layer & oblayer))
return false;
/* only use lights in the same scene, and in a visible layer */
if (kxscene != lightscene || !(m_lightobj.m_layer & scenelayer))
return false;
// lights don't get their openGL matrix updated, do it now
if (GetSGNode()->IsDirty())
GetOpenGLMatrix();
MT_CmMatrix4x4& worldmatrix= *GetOpenGLMatrixPtr();
vec[0] = worldmatrix(0,3);
vec[1] = worldmatrix(1,3);
vec[2] = worldmatrix(2,3);
vec[3] = 1.0f;
if (m_lightobj.m_type==RAS_LightObject::LIGHT_SUN) {
vec[0] = worldmatrix(0,2);
vec[1] = worldmatrix(1,2);
vec[2] = worldmatrix(2,2);
//vec[0]= base->object->obmat[2][0];
//vec[1]= base->object->obmat[2][1];
//vec[2]= base->object->obmat[2][2];
vec[3]= 0.0;
glLightfv((GLenum)(GL_LIGHT0+slot), GL_POSITION, vec);
}
else {
//vec[3]= 1.0;
glLightfv((GLenum)(GL_LIGHT0+slot), GL_POSITION, vec);
glLightf((GLenum)(GL_LIGHT0+slot), GL_CONSTANT_ATTENUATION, 1.0);
glLightf((GLenum)(GL_LIGHT0+slot), GL_LINEAR_ATTENUATION, m_lightobj.m_att1/m_lightobj.m_distance);
// without this next line it looks backward compatible.
//attennuation still is acceptable
glLightf((GLenum)(GL_LIGHT0+slot), GL_QUADRATIC_ATTENUATION, m_lightobj.m_att2/(m_lightobj.m_distance*m_lightobj.m_distance));
if (m_lightobj.m_type==RAS_LightObject::LIGHT_SPOT) {
vec[0] = -worldmatrix(0,2);
vec[1] = -worldmatrix(1,2);
vec[2] = -worldmatrix(2,2);
//vec[0]= -base->object->obmat[2][0];
//vec[1]= -base->object->obmat[2][1];
//vec[2]= -base->object->obmat[2][2];
glLightfv((GLenum)(GL_LIGHT0+slot), GL_SPOT_DIRECTION, vec);
glLightf((GLenum)(GL_LIGHT0+slot), GL_SPOT_CUTOFF, m_lightobj.m_spotsize/2.0);
glLightf((GLenum)(GL_LIGHT0+slot), GL_SPOT_EXPONENT, 128.0*m_lightobj.m_spotblend);
}
else
glLightf((GLenum)(GL_LIGHT0+slot), GL_SPOT_CUTOFF, 180.0);
}
if (m_lightobj.m_nodiffuse) {
vec[0] = vec[1] = vec[2] = vec[3] = 0.0;
}
else {
vec[0]= m_lightobj.m_energy*m_lightobj.m_red;
vec[1]= m_lightobj.m_energy*m_lightobj.m_green;
vec[2]= m_lightobj.m_energy*m_lightobj.m_blue;
vec[3]= 1.0;
}
glLightfv((GLenum)(GL_LIGHT0+slot), GL_DIFFUSE, vec);
if (m_lightobj.m_nospecular)
{
vec[0] = vec[1] = vec[2] = vec[3] = 0.0;
}
else if (m_lightobj.m_nodiffuse) {
vec[0]= m_lightobj.m_energy*m_lightobj.m_red;
vec[1]= m_lightobj.m_energy*m_lightobj.m_green;
vec[2]= m_lightobj.m_energy*m_lightobj.m_blue;
vec[3]= 1.0;
}
glLightfv((GLenum)(GL_LIGHT0+slot), GL_SPECULAR, vec);
glEnable((GLenum)(GL_LIGHT0+slot));
return true;
}
GPULamp *KX_LightObject::GetGPULamp()
{
if (m_glsl)
return GPU_lamp_from_blender(m_blenderscene, GetBlenderObject(), GetBlenderGroupObject());
else
return NULL;
}
void KX_LightObject::Update()
{
GPULamp *lamp;
if ((lamp = GetGPULamp()) != NULL && GetSGNode()) {
float obmat[4][4];
BGE performance, 3rd round: culling and rasterizer. This commit extend the technique of dynamic linked list to the mesh slots so as to eliminate dumb scan or map lookup. It provides massive performance improvement in the culling and in the rasterizer when the majority of objects are static. Other improvements: - Compute the opengl matrix only for objects that are visible. - Simplify hash function for GEN_HasedPtr - Scan light list instead of general object list to render shadows - Remove redundant opengl calls to set specularity, shinyness and diffuse between each mesh slots. - Cache GPU material to avoid frequent call to GPU_material_from_blender - Only set once the fixed elements of mesh slot - Use more inline function The following table shows the performance increase between 2.48, 1st round and this round of improvement. The test was done with a scene containing 40000 objects, of which 1000 are in the view frustrum approximately. The object are simple textured cube to make sure the GPU is not the bottleneck. As some of the rasterizer processing time has moved under culling, I present the sum of scenegraph(includes culling)+rasterizer time Scenegraph+rasterizer(ms) 2.48 1st round 3rd round All objects static, 323.0 86.0 7.2 all visible, 1000 in the view frustrum All objects static, 219.0 49.7 N/A(*) all invisible. All objects moving, 323.0 105.6 34.7 all visible, 1000 in the view frustrum Scene destruction 40min 40min 4s (*) : this time is not representative because the frame rate was at 60fps. In that case, the GPU holds down the GE by frame sync. By design, the overhead of the rasterizer is 0 when the the objects are invisible. This table shows a global speed up between 9x and 45x compared to 2.48a for scenegraph, culling and rasterizer overhead. The speed up goes much higher when objects are invisible. An additional 2-4x speed up is possible in the scenegraph by upgrading the Moto library to use Eigen2 BLAS library instead of C++ classes but the scenegraph is already so fast that it is not a priority right now. Next speed up in logic: many things to do there...
2009-05-07 09:13:01 +00:00
// lights don't get their openGL matrix updated, do it now
if (GetSGNode()->IsDirty())
GetOpenGLMatrix();
double *dobmat = GetOpenGLMatrixPtr()->getPointer();
for (int i=0; i<4; i++)
for (int j=0; j<4; j++, dobmat++)
obmat[i][j] = (float)*dobmat;
GPU_lamp_update(lamp, m_lightobj.m_layer, 0, obmat);
GPU_lamp_update_colors(lamp, m_lightobj.m_red, m_lightobj.m_green,
m_lightobj.m_blue, m_lightobj.m_energy);
}
}
bool KX_LightObject::HasShadowBuffer()
{
GPULamp *lamp;
if ((lamp = GetGPULamp()))
return GPU_lamp_has_shadow_buffer(lamp);
else
return false;
}
int KX_LightObject::GetShadowLayer()
{
GPULamp *lamp;
if ((lamp = GetGPULamp()))
return GPU_lamp_shadow_layer(lamp);
else
return 0;
}
void KX_LightObject::BindShadowBuffer(RAS_IRasterizer *ras, KX_Camera *cam, MT_Transform& camtrans)
{
GPULamp *lamp;
float viewmat[4][4], winmat[4][4];
int winsize;
/* bind framebuffer */
lamp = GetGPULamp();
GPU_lamp_shadow_buffer_bind(lamp, viewmat, &winsize, winmat);
/* setup camera transformation */
MT_Matrix4x4 modelviewmat((float*)viewmat);
MT_Matrix4x4 projectionmat((float*)winmat);
MT_Transform trans = MT_Transform((float*)viewmat);
camtrans.invert(trans);
cam->SetModelviewMatrix(modelviewmat);
cam->SetProjectionMatrix(projectionmat);
cam->NodeSetLocalPosition(camtrans.getOrigin());
cam->NodeSetLocalOrientation(camtrans.getBasis());
cam->NodeUpdateGS(0);
/* setup rasterizer transformations */
/* SetViewMatrix may use stereomode which we temporarily disable here */
RAS_IRasterizer::StereoMode stereomode = ras->GetStereoMode();
ras->SetStereoMode(RAS_IRasterizer::RAS_STEREO_NOSTEREO);
ras->SetProjectionMatrix(projectionmat);
ras->SetViewMatrix(modelviewmat, cam->NodeGetWorldOrientation(), cam->NodeGetWorldPosition(), cam->GetCameraData()->m_perspective);
ras->SetStereoMode(stereomode);
}
void KX_LightObject::UnbindShadowBuffer(RAS_IRasterizer *ras)
{
GPULamp *lamp = GetGPULamp();
GPU_lamp_shadow_buffer_unbind(lamp);
}
#ifdef WITH_PYTHON
/* ------------------------------------------------------------------------- */
/* Python Integration Hooks */
/* ------------------------------------------------------------------------- */
PyTypeObject KX_LightObject::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
2009-08-10 00:07:34 +00:00
"KX_LightObject",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0,
&KX_GameObject::Sequence,
&KX_GameObject::Mapping,
0,0,0,
NULL,
NULL,
0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0,0,0,0,0,0,0,
Methods,
0,
0,
&KX_GameObject::Type,
0,0,0,0,0,0,
py_base_new
};
PyMethodDef KX_LightObject::Methods[] = {
{NULL,NULL} //Sentinel
};
PyAttributeDef KX_LightObject::Attributes[] = {
KX_PYATTRIBUTE_INT_RW("layer", 1, 20, true, KX_LightObject, m_lightobj.m_layer),
KX_PYATTRIBUTE_FLOAT_RW("energy", 0, 10, KX_LightObject, m_lightobj.m_energy),
KX_PYATTRIBUTE_FLOAT_RW("distance", 0.01, 5000, KX_LightObject, m_lightobj.m_distance),
KX_PYATTRIBUTE_RW_FUNCTION("color", KX_LightObject, pyattr_get_color, pyattr_set_color),
KX_PYATTRIBUTE_FLOAT_RW("lin_attenuation", 0, 1, KX_LightObject, m_lightobj.m_att1),
KX_PYATTRIBUTE_FLOAT_RW("quad_attenuation", 0, 1, KX_LightObject, m_lightobj.m_att2),
KX_PYATTRIBUTE_FLOAT_RW("spotsize", 1, 180, KX_LightObject, m_lightobj.m_spotsize),
KX_PYATTRIBUTE_FLOAT_RW("spotblend", 0, 1, KX_LightObject, m_lightobj.m_spotblend),
KX_PYATTRIBUTE_RO_FUNCTION("SPOT", KX_LightObject, pyattr_get_typeconst),
KX_PYATTRIBUTE_RO_FUNCTION("SUN", KX_LightObject, pyattr_get_typeconst),
KX_PYATTRIBUTE_RO_FUNCTION("NORMAL", KX_LightObject, pyattr_get_typeconst),
KX_PYATTRIBUTE_RW_FUNCTION("type", KX_LightObject, pyattr_get_type, pyattr_set_type),
{ NULL } //Sentinel
};
PyObject* KX_LightObject::pyattr_get_color(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_LightObject* self = static_cast<KX_LightObject*>(self_v);
return Py_BuildValue("[fff]", self->m_lightobj.m_red, self->m_lightobj.m_green, self->m_lightobj.m_blue);
}
int KX_LightObject::pyattr_set_color(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_LightObject* self = static_cast<KX_LightObject*>(self_v);
MT_Vector3 color;
if (PyVecTo(value, color))
{
self->m_lightobj.m_red = color[0];
self->m_lightobj.m_green = color[1];
self->m_lightobj.m_blue = color[2];
return PY_SET_ATTR_SUCCESS;
}
return PY_SET_ATTR_FAIL;
}
PyObject* KX_LightObject::pyattr_get_typeconst(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
PyObject* retvalue;
const char* type = attrdef->m_name;
if (!strcmp(type, "SPOT")) {
retvalue = PyLong_FromSsize_t(RAS_LightObject::LIGHT_SPOT);
} else if (!strcmp(type, "SUN")) {
retvalue = PyLong_FromSsize_t(RAS_LightObject::LIGHT_SUN);
} else if (!strcmp(type, "NORMAL")) {
retvalue = PyLong_FromSsize_t(RAS_LightObject::LIGHT_NORMAL);
}
2011-09-01 02:12:53 +00:00
else {
/* should never happen */
PyErr_SetString(PyExc_TypeError, "light.type: internal error, invalid light type");
retvalue = NULL;
}
return retvalue;
}
PyObject* KX_LightObject::pyattr_get_type(void* self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_LightObject* self = static_cast<KX_LightObject*>(self_v);
return PyLong_FromSsize_t(self->m_lightobj.m_type);
}
int KX_LightObject::pyattr_set_type(void* self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject* value)
{
KX_LightObject* self = static_cast<KX_LightObject*>(self_v);
int val = PyLong_AsSsize_t(value);
if ((val==-1 && PyErr_Occurred()) || val<0 || val>2) {
PyErr_SetString(PyExc_ValueError, "light.type= val: KX_LightObject, expected an int between 0 and 2");
return PY_SET_ATTR_FAIL;
}
switch(val) {
case 0:
self->m_lightobj.m_type = self->m_lightobj.LIGHT_SPOT;
break;
case 1:
self->m_lightobj.m_type = self->m_lightobj.LIGHT_SUN;
break;
case 2:
self->m_lightobj.m_type = self->m_lightobj.LIGHT_NORMAL;
break;
}
return PY_SET_ATTR_SUCCESS;
}
#endif // WITH_PYTHON