2011-02-12 08:12:00 +00:00
|
|
|
# ##### BEGIN GPL LICENSE BLOCK #####
|
|
|
|
#
|
|
|
|
# This program is free software; you can redistribute it and/or
|
|
|
|
# modify it under the terms of the GNU General Public License
|
|
|
|
# as published by the Free Software Foundation; either version 2
|
|
|
|
# of the License, or (at your option) any later version.
|
|
|
|
#
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
# GNU General Public License for more details.
|
|
|
|
#
|
|
|
|
# You should have received a copy of the GNU General Public License
|
|
|
|
# along with this program; if not, write to the Free Software Foundation,
|
|
|
|
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
#
|
|
|
|
# ##### END GPL LICENSE BLOCK #####
|
|
|
|
|
|
|
|
# <pep8 compliant>
|
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
# This file defines a set of methods that are useful for various
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# Relative Keying Set (RKS) related operations, such as: callbacks
|
2011-02-04 09:27:25 +00:00
|
|
|
# for polling, iterator callbacks, and also generate callbacks.
|
|
|
|
# All of these can be used in conjunction with the others.
|
|
|
|
|
2011-02-12 08:12:00 +00:00
|
|
|
__all__ = [
|
|
|
|
"path_add_property",
|
|
|
|
"RKS_POLL_selected_objects",
|
|
|
|
"RKS_POLL_selected_bones",
|
|
|
|
"RKS_POLL_selected_items",
|
|
|
|
"RKS_ITER_selected_item",
|
|
|
|
"RKS_GEN_available",
|
|
|
|
"RKS_GEN_location",
|
|
|
|
"RKS_GEN_rotation",
|
|
|
|
"RKS_GEN_scaling",
|
|
|
|
]
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
|
|
|
|
import bpy
|
|
|
|
|
|
|
|
###########################
|
|
|
|
# General Utilities
|
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# Append the specified property name on the the existing path
|
|
|
|
def path_add_property(path, prop):
|
2011-04-05 12:31:55 +00:00
|
|
|
if path:
|
2011-02-04 09:27:25 +00:00
|
|
|
return path + "." + prop
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
else:
|
2011-02-04 09:27:25 +00:00
|
|
|
return prop
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
|
|
|
|
###########################
|
|
|
|
# Poll Callbacks
|
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
|
2011-04-05 11:49:58 +00:00
|
|
|
# selected objects (active object must be in object mode)
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
def RKS_POLL_selected_objects(ksi, context):
|
2011-04-05 12:31:55 +00:00
|
|
|
ob = context.active_object
|
|
|
|
if ob:
|
|
|
|
return ob.mode == 'OBJECT'
|
2011-04-05 11:49:58 +00:00
|
|
|
else:
|
2011-04-05 12:31:55 +00:00
|
|
|
return bool(context.selected_objects)
|
2011-02-04 09:27:25 +00:00
|
|
|
|
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# selected bones
|
|
|
|
def RKS_POLL_selected_bones(ksi, context):
|
2011-02-04 09:27:25 +00:00
|
|
|
# we must be in Pose Mode, and there must be some bones selected
|
2011-04-05 12:31:55 +00:00
|
|
|
ob = context.active_object
|
|
|
|
if ob and ob.mode == 'POSE':
|
|
|
|
if context.active_pose_bone or context.selected_pose_bones:
|
2011-02-04 09:27:25 +00:00
|
|
|
return True
|
|
|
|
|
|
|
|
# nothing selected
|
|
|
|
return False
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
|
|
|
|
|
|
|
|
# selected bones or objects
|
|
|
|
def RKS_POLL_selected_items(ksi, context):
|
2011-02-04 09:27:25 +00:00
|
|
|
return RKS_POLL_selected_bones(ksi, context) or RKS_POLL_selected_objects(ksi, context)
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
|
|
|
|
###########################
|
|
|
|
# Iterator Callbacks
|
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# all selected objects or pose bones, depending on which we've got
|
|
|
|
def RKS_ITER_selected_item(ksi, context, ks):
|
2011-04-05 12:31:55 +00:00
|
|
|
ob = context.active_object
|
|
|
|
if ob and ob.mode == 'POSE':
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
for bone in context.selected_pose_bones:
|
|
|
|
ksi.generate(context, ks, bone)
|
|
|
|
else:
|
|
|
|
for ob in context.selected_objects:
|
|
|
|
ksi.generate(context, ks, ob)
|
2011-04-05 12:31:55 +00:00
|
|
|
|
|
|
|
|
2011-04-05 11:49:58 +00:00
|
|
|
# all select objects only
|
|
|
|
def RKS_ITER_selected_objects(ksi, context, ks):
|
|
|
|
for ob in context.selected_objects:
|
|
|
|
ksi.generate(context, ks, ob)
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
|
|
|
|
###########################
|
|
|
|
# Generate Callbacks
|
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# 'Available' F-Curves
|
|
|
|
def RKS_GEN_available(ksi, context, ks, data):
|
2011-02-04 09:27:25 +00:00
|
|
|
# try to get the animation data associated with the closest
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# ID-block to the data (neither of which may exist/be easy to find)
|
|
|
|
id_block = data.id_data
|
2010-03-24 15:17:11 +00:00
|
|
|
adt = getattr(id_block, "animation_data", None)
|
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# there must also be an active action...
|
2010-03-24 15:17:11 +00:00
|
|
|
if adt is None or adt.action is None:
|
2011-02-04 09:27:25 +00:00
|
|
|
return
|
|
|
|
|
|
|
|
# if we haven't got an ID-block as 'data', try to restrict
|
2011-01-10 10:22:08 +00:00
|
|
|
# paths added to only those which branch off from here
|
|
|
|
# i.e. for bones
|
|
|
|
if id_block != data:
|
|
|
|
basePath = data.path_from_id()
|
|
|
|
else:
|
2011-02-04 09:27:25 +00:00
|
|
|
basePath = None # this is not needed...
|
|
|
|
|
2011-01-10 10:22:08 +00:00
|
|
|
# for each F-Curve, include a path to key it
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# NOTE: we don't need to set the group settings here
|
|
|
|
for fcu in adt.action.fcurves:
|
2011-01-10 10:22:08 +00:00
|
|
|
if basePath:
|
|
|
|
if basePath in fcu.data_path:
|
|
|
|
ks.paths.add(id_block, fcu.data_path, index=fcu.array_index)
|
|
|
|
else:
|
|
|
|
ks.paths.add(id_block, fcu.data_path, index=fcu.array_index)
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# ------
|
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# get ID block and based ID path for transform generators
|
2011-02-12 08:12:00 +00:00
|
|
|
# private function
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
def get_transform_generators_base_info(data):
|
2011-02-04 09:27:25 +00:00
|
|
|
# ID-block for the data
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
id_block = data.id_data
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# get base path and grouping method/name
|
|
|
|
if isinstance(data, bpy.types.ID):
|
|
|
|
# no path in this case
|
|
|
|
path = ""
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# data on ID-blocks directly should get grouped by the KeyingSet
|
2010-04-01 06:26:41 +00:00
|
|
|
grouping = None
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
else:
|
|
|
|
# get the path to the ID-block
|
2010-04-06 07:49:10 +00:00
|
|
|
path = data.path_from_id()
|
2010-03-24 15:17:11 +00:00
|
|
|
|
|
|
|
# try to use the name of the data element to group the F-Curve
|
|
|
|
# else fallback on the KeyingSet name
|
|
|
|
grouping = getattr(data, "name", None)
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# return the ID-block and the path
|
|
|
|
return id_block, path, grouping
|
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
|
|
|
|
# Location
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
def RKS_GEN_location(ksi, context, ks, data):
|
|
|
|
# get id-block and path info
|
2010-08-18 07:14:10 +00:00
|
|
|
id_block, base_path, grouping = get_transform_generators_base_info(data)
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# add the property name to the base path
|
|
|
|
path = path_add_property(base_path, "location")
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# add Keying Set entry for this...
|
|
|
|
if grouping:
|
2010-08-18 07:14:10 +00:00
|
|
|
ks.paths.add(id_block, path, group_method='NAMED', group_name=grouping)
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
else:
|
2010-04-04 22:13:57 +00:00
|
|
|
ks.paths.add(id_block, path)
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
|
|
|
|
# Rotation
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
def RKS_GEN_rotation(ksi, context, ks, data):
|
|
|
|
# get id-block and path info
|
2011-02-04 09:27:25 +00:00
|
|
|
id_block, base_path, grouping = get_transform_generators_base_info(data)
|
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# add the property name to the base path
|
|
|
|
# rotation mode affects the property used
|
|
|
|
if data.rotation_mode == 'QUATERNION':
|
|
|
|
path = path_add_property(base_path, "rotation_quaternion")
|
2010-08-27 04:43:47 +00:00
|
|
|
elif data.rotation_mode == 'AXIS_ANGLE':
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
path = path_add_property(base_path, "rotation_axis_angle")
|
|
|
|
else:
|
|
|
|
path = path_add_property(base_path, "rotation_euler")
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# add Keying Set entry for this...
|
|
|
|
if grouping:
|
2010-08-18 07:14:10 +00:00
|
|
|
ks.paths.add(id_block, path, group_method='NAMED', group_name=grouping)
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
else:
|
2010-04-04 22:13:57 +00:00
|
|
|
ks.paths.add(id_block, path)
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
|
2011-02-04 09:27:25 +00:00
|
|
|
|
|
|
|
# Scaling
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
def RKS_GEN_scaling(ksi, context, ks, data):
|
|
|
|
# get id-block and path info
|
2011-02-04 09:27:25 +00:00
|
|
|
id_block, base_path, grouping = get_transform_generators_base_info(data)
|
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# add the property name to the base path
|
|
|
|
path = path_add_property(base_path, "scale")
|
2011-02-04 09:27:25 +00:00
|
|
|
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
# add Keying Set entry for this...
|
|
|
|
if grouping:
|
2010-08-18 07:14:10 +00:00
|
|
|
ks.paths.add(id_block, path, group_method='NAMED', group_name=grouping)
|
== Massive Keying Sets Recode ==
After a few days of wrong turns and learning the finer points of RNA-type-subclassing the hard way, this commit finally presents a refactored version of the Keying Sets system (now version 2) based on some requirements from Cessen.
For a more thorough discussion of this commit, see
http://sites.google.com/site/aligorith/keyingsets_2.pdf?attredirects=0&d=1
------
The main highlight of this refactor is that relative Keying Sets have now been recoded so that Python callbacks are run to generate the Keying Set's list of paths everytime the Keying Set is used (to insert or delete keyframes), allowing complex heuristics to be used to determine whether a property gets keyframed based on the current context. These checks may include checking on selection status of related entities, or transform locks.
Built-In KeyingSets have also been recoded, and moved from C and out into Python. These are now coded as Relative Keying Sets, and can to some extent serve as basis for adding new relative Keying Sets. However, these have mostly been coded in a slightly 'modular' way which may be confusing for those not so familiar with Python in general. A usable template will be added soon for more general usage.
Keyframing settings (i.e. 'visual', 'needed') can now be specified on a per-path basis now, which is especially useful for Absolute Keying Sets, where control over this is often beneficial.
Most of the places where Auto-Keyframing is performed have been tidied up for consistency. I'm sure quite a few issues still exist there, but these I'll clean up over the next few days.
2010-03-16 06:18:49 +00:00
|
|
|
else:
|
2010-04-04 22:13:57 +00:00
|
|
|
ks.paths.add(id_block, path)
|