blender/release/ui/buttons_physics_softbody.py

273 lines
6.8 KiB
Python
Raw Normal View History

import bpy
class PhysicButtonsPanel(bpy.types.Panel):
__space_type__ = "BUTTONS_WINDOW"
__region_type__ = "WINDOW"
__context__ = "physics"
def poll(self, context):
ob = context.object
rd = context.scene.render_data
return (ob and ob.type == 'MESH') and (not rd.use_game_engine)
class PHYSICS_PT_softbody(PhysicButtonsPanel):
__label__ = "Soft Body"
def draw(self, context):
layout = self.layout
md = context.soft_body
ob = context.object
split = layout.split()
split.operator_context = "EXEC_DEFAULT"
if md:
# remove modifier + settings
split.set_context_pointer("modifier", md)
split.itemO("object.modifier_remove", text="Remove")
row = split.row(align=True)
row.itemR(md, "render", text="")
row.itemR(md, "realtime", text="")
else:
# add modifier
split.item_enumO("object.modifier_add", "type", 'SOFT_BODY', text="Add")
split.itemL("")
if md:
softbody = md.settings
# General
split = layout.split()
col = split.column()
col.itemL(text="Object:")
col.itemR(softbody, "mass")
col.itemR(softbody, "friction")
col = split.column()
col.itemL(text="Simulation:")
col.itemR(softbody, "gravity")
col.itemR(softbody, "speed")
class PHYSICS_PT_softbody_cache(PhysicButtonsPanel):
__label__ = "Soft Body Cache"
__default_closed__ = True
def poll(self, context):
return (context.soft_body)
def draw(self, context):
layout = self.layout
cache = context.soft_body.point_cache
New point cache file format: - HEADER (beginning of each file) * general header: + 8 char: "BPHYSICS" + 1 int: simulation type (same as PTCacheID->type) * custom header (same for sb, particles and cloth, but can be different for new dynamics) + 1 int: totpoint (number of points) + 1 int: data_types (bit flags for what the stored data is) - DATA (directly after header) *totpoint times the data as specified in data_types flags - simulation type soft body = 0, particles = 1, cloth = 2 - data types (more can be added easily when needed) data flag contains ---------------------------------------- index (1<<0) 1 int (index of current point) location (1<<1) 3 float velocity (1<<2) 3 float rotation (1<<3) 4 float (quaternion) avelocity (1<<4) 3 float (used for particles) xconst (1<<4) 3 float (used for cloth) size (1<<5) 1 float times (1<<6) 3 float (birth, die & lifetime of particle) boids (1<<7) 1 BoidData Notes: - Every frame is not nescessary since data is interpolated for the inbetween frames. - For now every point is needed for every cached frame, the "index" data type is reserved for future usage. - For loading external particle caches only "location" data is necessary, other needed values are determined from the given data. - Non-dynamic data should be written into an info file if external usage is desired. * Info file is named as normal cache files, but with frame number 0; * "Non-dynamic" means data such as particle times. * Written automatically when baking to disk so basically a library of particle simulations should be possible. - Old disk cache format is supported for reading, so pre 2.5 files shouldn't break. However old style memory cache (added during 2.5 development) is not supported. To keep memory cached simulations convert the cache to disk cache before svn update and save the blend. - External sb and cloth caches should be perfectly possible, but due to lack of testing these are not yet enabled in ui. Other changes: - Multiple point caches per dynamics system. * In the future these will hopefully be nla editable etc, but for now things are simple and the current (selected) point cache is used. * Changing the amount of cached points (for example particle count) is allowed, but might not give correct results if multiple caches are present. - Generalization of point cache baking etc operator & rna code. - Comb brushing particle hair didn't work smoothly.
2009-08-12 09:54:29 +00:00
layout.set_context_pointer("PointCache", cache)
row = layout.row()
row.template_list(cache, "point_cache_list", cache, "active_point_cache_index")
col = row.column(align=True)
col.itemO("ptcache.add_new", icon="ICON_ZOOMIN", text="")
col.itemO("ptcache.remove", icon="ICON_ZOOMOUT", text="")
row = layout.row()
row.itemR(cache, "name")
row = layout.row()
row.itemR(cache, "start_frame")
row.itemR(cache, "end_frame")
row = layout.row()
if cache.baked == True:
New point cache file format: - HEADER (beginning of each file) * general header: + 8 char: "BPHYSICS" + 1 int: simulation type (same as PTCacheID->type) * custom header (same for sb, particles and cloth, but can be different for new dynamics) + 1 int: totpoint (number of points) + 1 int: data_types (bit flags for what the stored data is) - DATA (directly after header) *totpoint times the data as specified in data_types flags - simulation type soft body = 0, particles = 1, cloth = 2 - data types (more can be added easily when needed) data flag contains ---------------------------------------- index (1<<0) 1 int (index of current point) location (1<<1) 3 float velocity (1<<2) 3 float rotation (1<<3) 4 float (quaternion) avelocity (1<<4) 3 float (used for particles) xconst (1<<4) 3 float (used for cloth) size (1<<5) 1 float times (1<<6) 3 float (birth, die & lifetime of particle) boids (1<<7) 1 BoidData Notes: - Every frame is not nescessary since data is interpolated for the inbetween frames. - For now every point is needed for every cached frame, the "index" data type is reserved for future usage. - For loading external particle caches only "location" data is necessary, other needed values are determined from the given data. - Non-dynamic data should be written into an info file if external usage is desired. * Info file is named as normal cache files, but with frame number 0; * "Non-dynamic" means data such as particle times. * Written automatically when baking to disk so basically a library of particle simulations should be possible. - Old disk cache format is supported for reading, so pre 2.5 files shouldn't break. However old style memory cache (added during 2.5 development) is not supported. To keep memory cached simulations convert the cache to disk cache before svn update and save the blend. - External sb and cloth caches should be perfectly possible, but due to lack of testing these are not yet enabled in ui. Other changes: - Multiple point caches per dynamics system. * In the future these will hopefully be nla editable etc, but for now things are simple and the current (selected) point cache is used. * Changing the amount of cached points (for example particle count) is allowed, but might not give correct results if multiple caches are present. - Generalization of point cache baking etc operator & rna code. - Comb brushing particle hair didn't work smoothly.
2009-08-12 09:54:29 +00:00
row.itemO("ptcache.free_bake", text="Free Bake")
else:
New point cache file format: - HEADER (beginning of each file) * general header: + 8 char: "BPHYSICS" + 1 int: simulation type (same as PTCacheID->type) * custom header (same for sb, particles and cloth, but can be different for new dynamics) + 1 int: totpoint (number of points) + 1 int: data_types (bit flags for what the stored data is) - DATA (directly after header) *totpoint times the data as specified in data_types flags - simulation type soft body = 0, particles = 1, cloth = 2 - data types (more can be added easily when needed) data flag contains ---------------------------------------- index (1<<0) 1 int (index of current point) location (1<<1) 3 float velocity (1<<2) 3 float rotation (1<<3) 4 float (quaternion) avelocity (1<<4) 3 float (used for particles) xconst (1<<4) 3 float (used for cloth) size (1<<5) 1 float times (1<<6) 3 float (birth, die & lifetime of particle) boids (1<<7) 1 BoidData Notes: - Every frame is not nescessary since data is interpolated for the inbetween frames. - For now every point is needed for every cached frame, the "index" data type is reserved for future usage. - For loading external particle caches only "location" data is necessary, other needed values are determined from the given data. - Non-dynamic data should be written into an info file if external usage is desired. * Info file is named as normal cache files, but with frame number 0; * "Non-dynamic" means data such as particle times. * Written automatically when baking to disk so basically a library of particle simulations should be possible. - Old disk cache format is supported for reading, so pre 2.5 files shouldn't break. However old style memory cache (added during 2.5 development) is not supported. To keep memory cached simulations convert the cache to disk cache before svn update and save the blend. - External sb and cloth caches should be perfectly possible, but due to lack of testing these are not yet enabled in ui. Other changes: - Multiple point caches per dynamics system. * In the future these will hopefully be nla editable etc, but for now things are simple and the current (selected) point cache is used. * Changing the amount of cached points (for example particle count) is allowed, but might not give correct results if multiple caches are present. - Generalization of point cache baking etc operator & rna code. - Comb brushing particle hair didn't work smoothly.
2009-08-12 09:54:29 +00:00
row.item_booleanO("ptcache.bake", "bake", True, text="Bake")
sub = row.row()
sub.enabled = cache.frames_skipped or cache.outdated
New point cache file format: - HEADER (beginning of each file) * general header: + 8 char: "BPHYSICS" + 1 int: simulation type (same as PTCacheID->type) * custom header (same for sb, particles and cloth, but can be different for new dynamics) + 1 int: totpoint (number of points) + 1 int: data_types (bit flags for what the stored data is) - DATA (directly after header) *totpoint times the data as specified in data_types flags - simulation type soft body = 0, particles = 1, cloth = 2 - data types (more can be added easily when needed) data flag contains ---------------------------------------- index (1<<0) 1 int (index of current point) location (1<<1) 3 float velocity (1<<2) 3 float rotation (1<<3) 4 float (quaternion) avelocity (1<<4) 3 float (used for particles) xconst (1<<4) 3 float (used for cloth) size (1<<5) 1 float times (1<<6) 3 float (birth, die & lifetime of particle) boids (1<<7) 1 BoidData Notes: - Every frame is not nescessary since data is interpolated for the inbetween frames. - For now every point is needed for every cached frame, the "index" data type is reserved for future usage. - For loading external particle caches only "location" data is necessary, other needed values are determined from the given data. - Non-dynamic data should be written into an info file if external usage is desired. * Info file is named as normal cache files, but with frame number 0; * "Non-dynamic" means data such as particle times. * Written automatically when baking to disk so basically a library of particle simulations should be possible. - Old disk cache format is supported for reading, so pre 2.5 files shouldn't break. However old style memory cache (added during 2.5 development) is not supported. To keep memory cached simulations convert the cache to disk cache before svn update and save the blend. - External sb and cloth caches should be perfectly possible, but due to lack of testing these are not yet enabled in ui. Other changes: - Multiple point caches per dynamics system. * In the future these will hopefully be nla editable etc, but for now things are simple and the current (selected) point cache is used. * Changing the amount of cached points (for example particle count) is allowed, but might not give correct results if multiple caches are present. - Generalization of point cache baking etc operator & rna code. - Comb brushing particle hair didn't work smoothly.
2009-08-12 09:54:29 +00:00
sub.itemO("ptcache.bake", "bake", False, text="Calculate to Current Frame")
row = layout.row()
New point cache file format: - HEADER (beginning of each file) * general header: + 8 char: "BPHYSICS" + 1 int: simulation type (same as PTCacheID->type) * custom header (same for sb, particles and cloth, but can be different for new dynamics) + 1 int: totpoint (number of points) + 1 int: data_types (bit flags for what the stored data is) - DATA (directly after header) *totpoint times the data as specified in data_types flags - simulation type soft body = 0, particles = 1, cloth = 2 - data types (more can be added easily when needed) data flag contains ---------------------------------------- index (1<<0) 1 int (index of current point) location (1<<1) 3 float velocity (1<<2) 3 float rotation (1<<3) 4 float (quaternion) avelocity (1<<4) 3 float (used for particles) xconst (1<<4) 3 float (used for cloth) size (1<<5) 1 float times (1<<6) 3 float (birth, die & lifetime of particle) boids (1<<7) 1 BoidData Notes: - Every frame is not nescessary since data is interpolated for the inbetween frames. - For now every point is needed for every cached frame, the "index" data type is reserved for future usage. - For loading external particle caches only "location" data is necessary, other needed values are determined from the given data. - Non-dynamic data should be written into an info file if external usage is desired. * Info file is named as normal cache files, but with frame number 0; * "Non-dynamic" means data such as particle times. * Written automatically when baking to disk so basically a library of particle simulations should be possible. - Old disk cache format is supported for reading, so pre 2.5 files shouldn't break. However old style memory cache (added during 2.5 development) is not supported. To keep memory cached simulations convert the cache to disk cache before svn update and save the blend. - External sb and cloth caches should be perfectly possible, but due to lack of testing these are not yet enabled in ui. Other changes: - Multiple point caches per dynamics system. * In the future these will hopefully be nla editable etc, but for now things are simple and the current (selected) point cache is used. * Changing the amount of cached points (for example particle count) is allowed, but might not give correct results if multiple caches are present. - Generalization of point cache baking etc operator & rna code. - Comb brushing particle hair didn't work smoothly.
2009-08-12 09:54:29 +00:00
row.itemO("ptcache.bake_from_cache", text="Current Cache to Bake")
row.itemR(cache, "step");
row = layout.row()
row.itemR(cache, "quick_cache")
row.itemR(cache, "disk_cache")
layout.itemL(text=cache.info)
layout.itemS()
row = layout.row()
row.itemO("ptcache.bake_all", "bake", True, text="Bake All Dynamics")
row.itemO("ptcache.free_bake_all", text="Free All Bakes")
New point cache file format: - HEADER (beginning of each file) * general header: + 8 char: "BPHYSICS" + 1 int: simulation type (same as PTCacheID->type) * custom header (same for sb, particles and cloth, but can be different for new dynamics) + 1 int: totpoint (number of points) + 1 int: data_types (bit flags for what the stored data is) - DATA (directly after header) *totpoint times the data as specified in data_types flags - simulation type soft body = 0, particles = 1, cloth = 2 - data types (more can be added easily when needed) data flag contains ---------------------------------------- index (1<<0) 1 int (index of current point) location (1<<1) 3 float velocity (1<<2) 3 float rotation (1<<3) 4 float (quaternion) avelocity (1<<4) 3 float (used for particles) xconst (1<<4) 3 float (used for cloth) size (1<<5) 1 float times (1<<6) 3 float (birth, die & lifetime of particle) boids (1<<7) 1 BoidData Notes: - Every frame is not nescessary since data is interpolated for the inbetween frames. - For now every point is needed for every cached frame, the "index" data type is reserved for future usage. - For loading external particle caches only "location" data is necessary, other needed values are determined from the given data. - Non-dynamic data should be written into an info file if external usage is desired. * Info file is named as normal cache files, but with frame number 0; * "Non-dynamic" means data such as particle times. * Written automatically when baking to disk so basically a library of particle simulations should be possible. - Old disk cache format is supported for reading, so pre 2.5 files shouldn't break. However old style memory cache (added during 2.5 development) is not supported. To keep memory cached simulations convert the cache to disk cache before svn update and save the blend. - External sb and cloth caches should be perfectly possible, but due to lack of testing these are not yet enabled in ui. Other changes: - Multiple point caches per dynamics system. * In the future these will hopefully be nla editable etc, but for now things are simple and the current (selected) point cache is used. * Changing the amount of cached points (for example particle count) is allowed, but might not give correct results if multiple caches are present. - Generalization of point cache baking etc operator & rna code. - Comb brushing particle hair didn't work smoothly.
2009-08-12 09:54:29 +00:00
layout.itemO("ptcache.bake_all", "bake", False, text="Update All Dynamics to current frame")
class PHYSICS_PT_softbody_goal(PhysicButtonsPanel):
__label__ = "Soft Body Goal"
def poll(self, context):
return (context.soft_body)
def draw_header(self, context):
layout = self.layout
softbody = context.soft_body.settings
layout.itemR(softbody, "use_goal", text="")
def draw(self, context):
layout = self.layout
md = context.soft_body
ob = context.object
split = layout.split()
if md:
softbody = md.settings
layout.active = softbody.use_goal
# Goal
split = layout.split()
col = split.column()
col.itemL(text="Goal Strengths:")
col.itemR(softbody, "goal_default", text="Default")
sub = col.column(align=True)
sub.itemR(softbody, "goal_min", text="Minimum")
sub.itemR(softbody, "goal_max", text="Maximum")
col = split.column()
col.itemL(text="Goal Settings:")
col.itemR(softbody, "goal_spring", text="Stiffness")
col.itemR(softbody, "goal_friction", text="Damping")
layout.item_pointerR(softbody, "goal_vertex_group", ob, "vertex_groups", text="Vertex Group")
class PHYSICS_PT_softbody_edge(PhysicButtonsPanel):
__label__ = "Soft Body Edges"
def poll(self, context):
return (context.soft_body)
def draw_header(self, context):
layout = self.layout
softbody = context.soft_body.settings
layout.itemR(softbody, "use_edges", text="")
def draw(self, context):
layout = self.layout
md = context.soft_body
ob = context.object
if md:
softbody = md.settings
layout.active = softbody.use_edges
split = layout.split()
col = split.column()
col.itemL(text="Springs:")
col.itemR(softbody, "pull")
col.itemR(softbody, "push")
col.itemR(softbody, "damp")
col.itemR(softbody, "plastic")
col.itemR(softbody, "bending")
col.itemR(softbody, "spring_length", text="Length")
col = split.column()
col.itemR(softbody, "stiff_quads")
sub = col.column()
sub.active = softbody.stiff_quads
sub.itemR(softbody, "shear")
col.itemR(softbody, "new_aero", text="Aero")
sub = col.column()
sub.enabled = softbody.new_aero
sub.itemR(softbody, "aero", text="Factor")
col.itemL(text="Collision:")
col.itemR(softbody, "edge_collision", text="Edge")
col.itemR(softbody, "face_collision", text="Face")
class PHYSICS_PT_softbody_collision(PhysicButtonsPanel):
__label__ = "Soft Body Collision"
def poll(self, context):
return (context.soft_body)
def draw_header(self, context):
layout = self.layout
softbody = context.soft_body.settings
layout.itemR(softbody, "self_collision", text="")
def draw(self, context):
layout = self.layout
md = context.soft_body
ob = context.object
if md:
softbody = md.settings
layout.active = softbody.self_collision
layout.itemL(text="Collision Type:")
layout.itemR(softbody, "collision_type", expand=True)
col = layout.column(align=True)
col.itemL(text="Ball:")
col.itemR(softbody, "ball_size", text="Size")
col.itemR(softbody, "ball_stiff", text="Stiffness")
col.itemR(softbody, "ball_damp", text="Dampening")
class PHYSICS_PT_softbody_solver(PhysicButtonsPanel):
__label__ = "Soft Body Solver"
def poll(self, context):
return (context.soft_body)
def draw(self, context):
layout = self.layout
md = context.soft_body
ob = context.object
if md:
softbody = md.settings
# Solver
split = layout.split()
col = split.column(align=True)
col.itemL(text="Step Size:")
col.itemR(softbody, "minstep")
col.itemR(softbody, "maxstep")
col.itemR(softbody, "auto_step", text="Auto-Step")
col = split.column()
col.itemR(softbody, "error_limit")
col.itemL(text="Helpers:")
col.itemR(softbody, "choke")
col.itemR(softbody, "fuzzy")
layout.itemL(text="Diagnostics:")
layout.itemR(softbody, "diagnose")
bpy.types.register(PHYSICS_PT_softbody)
bpy.types.register(PHYSICS_PT_softbody_cache)
bpy.types.register(PHYSICS_PT_softbody_goal)
bpy.types.register(PHYSICS_PT_softbody_edge)
bpy.types.register(PHYSICS_PT_softbody_collision)
bpy.types.register(PHYSICS_PT_softbody_solver)