blender/intern/cycles/kernel/geom/geom_triangle_intersect.h

723 lines
25 KiB
C
Raw Normal View History

/*
* Copyright 2014, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Triangle/Ray intersections.
*
* For BVH ray intersection we use a precomputed triangle storage to accelerate
* intersection at the cost of more memory usage.
*/
CCL_NAMESPACE_BEGIN
ccl_device_inline bool triangle_intersect(KernelGlobals *kg,
Intersection *isect,
float3 P,
float3 dir,
uint visibility,
int object,
int prim_addr)
{
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
const ssef *ssef_verts = (ssef*)&kg->__prim_tri_verts.data[tri_vindex];
#else
Cycles: Reduce memory usage by de-duplicating triangle storage There are several internal changes for this: First idea is to make __tri_verts to behave similar to __tri_storage, meaning, __tri_verts array now contains all vertices of all triangles instead of just mesh vertices. This saves some lookup when reading triangle coordinates in functions like triangle_normal(). In order to make it efficient needed to store global triangle offset somewhere. So no __tri_vindex.w contains a global triangle index which can be used to read triangle vertices. Additionally, the order of vertices in that array is aligned with primitives from BVH. This is needed to keep cache as much coherent as possible for BVH traversal. This causes some extra tricks needed to fill the array in and deal with True Displacement but those trickery is fully required to prevent noticeable slowdown. Next idea was to use this __tri_verts instead of __tri_storage in intersection code. Unfortunately, this is quite tricky to do without noticeable speed loss. Mainly this loss is caused by extra lookup happening to access vertex coordinate. Fortunately, tricks here and there (i,e, some types changes to avoid casts which are not really coming for free) reduces those losses to an acceptable level. So now they are within couple of percent only, On a positive site we've achieved: - Few percent of memory save with triangle-only scenes. Actual save in this case is close to size of all vertices. On a more fine-subdivided scenes this benefit might become more obvious. - Huge memory save of hairy scenes. For example, on koro.blend there is about 20% memory save. Similar figure for bunny.blend. This memory save was the main goal of this commit to move forward with Hair BVH which required more memory per BVH node. So while this sounds exciting, this memory optimization will become invisible by upcoming Hair BVH work. But again on a positive side, we can add an option to NOT use Hair BVH and then we'll have same-ish render times as we've got currently but will have this 20% memory benefit on hairy scenes.
2016-06-10 14:13:50 +00:00
const float4 tri_a = kernel_tex_fetch(__prim_tri_verts, tri_vindex+0),
tri_b = kernel_tex_fetch(__prim_tri_verts, tri_vindex+1),
tri_c = kernel_tex_fetch(__prim_tri_verts, tri_vindex+2);
#endif
float t, u, v;
if(ray_triangle_intersect(P,
dir,
isect->t,
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
ssef_verts,
#else
float4_to_float3(tri_a),
float4_to_float3(tri_b),
float4_to_float3(tri_c),
#endif
&u, &v, &t))
{
#ifdef __VISIBILITY_FLAG__
/* Visibility flag test. we do it here under the assumption
* that most triangles are culled by node flags.
*/
if(kernel_tex_fetch(__prim_visibility, prim_addr) & visibility)
#endif
{
isect->prim = prim_addr;
isect->object = object;
isect->type = PRIMITIVE_TRIANGLE;
isect->u = u;
isect->v = v;
isect->t = t;
return true;
}
}
return false;
}
#ifdef __KERNEL_AVX2__
#define cross256(A,B, C,D) _mm256_fmsub_ps(A,B, _mm256_mul_ps(C,D))
ccl_device_inline int ray_triangle_intersect8(
KernelGlobals *kg,
float3 ray_P,
float3 ray_dir,
Intersection **isect,
uint visibility,
int object,
__m256 *triA,
__m256 *triB,
__m256 *triC,
int prim_addr,
int prim_num,
uint *num_hits,
uint max_hits,
int *num_hits_in_instance,
float isect_t)
{
const unsigned char prim_num_mask = (1 << prim_num) - 1;
const __m256i zero256 = _mm256_setzero_si256();
const __m256 Px256 = _mm256_set1_ps(ray_P.x);
const __m256 Py256 = _mm256_set1_ps(ray_P.y);
const __m256 Pz256 = _mm256_set1_ps(ray_P.z);
const __m256 dirx256 = _mm256_set1_ps(ray_dir.x);
const __m256 diry256 = _mm256_set1_ps(ray_dir.y);
const __m256 dirz256 = _mm256_set1_ps(ray_dir.z);
/* Calculate vertices relative to ray origin. */
__m256 v0_x_256 = _mm256_sub_ps(triC[0], Px256);
__m256 v0_y_256 = _mm256_sub_ps(triC[1], Py256);
__m256 v0_z_256 = _mm256_sub_ps(triC[2], Pz256);
__m256 v1_x_256 = _mm256_sub_ps(triA[0], Px256);
__m256 v1_y_256 = _mm256_sub_ps(triA[1], Py256);
__m256 v1_z_256 = _mm256_sub_ps(triA[2], Pz256);
__m256 v2_x_256 = _mm256_sub_ps(triB[0], Px256);
__m256 v2_y_256 = _mm256_sub_ps(triB[1], Py256);
__m256 v2_z_256 = _mm256_sub_ps(triB[2], Pz256);
__m256 v0_v1_x_256 = _mm256_add_ps(v0_x_256, v1_x_256);
__m256 v0_v1_y_256 = _mm256_add_ps(v0_y_256, v1_y_256);
__m256 v0_v1_z_256 = _mm256_add_ps(v0_z_256, v1_z_256);
__m256 v0_v2_x_256 = _mm256_add_ps(v0_x_256, v2_x_256);
__m256 v0_v2_y_256 = _mm256_add_ps(v0_y_256, v2_y_256);
__m256 v0_v2_z_256 = _mm256_add_ps(v0_z_256, v2_z_256);
__m256 v1_v2_x_256 = _mm256_add_ps(v1_x_256, v2_x_256);
__m256 v1_v2_y_256 = _mm256_add_ps(v1_y_256, v2_y_256);
__m256 v1_v2_z_256 = _mm256_add_ps(v1_z_256, v2_z_256);
/* Calculate triangle edges. */
__m256 e0_x_256 = _mm256_sub_ps(v2_x_256, v0_x_256);
__m256 e0_y_256 = _mm256_sub_ps(v2_y_256, v0_y_256);
__m256 e0_z_256 = _mm256_sub_ps(v2_z_256, v0_z_256);
__m256 e1_x_256 = _mm256_sub_ps(v0_x_256, v1_x_256);
__m256 e1_y_256 = _mm256_sub_ps(v0_y_256, v1_y_256);
__m256 e1_z_256 = _mm256_sub_ps(v0_z_256, v1_z_256);
__m256 e2_x_256 = _mm256_sub_ps(v1_x_256, v2_x_256);
__m256 e2_y_256 = _mm256_sub_ps(v1_y_256, v2_y_256);
__m256 e2_z_256 = _mm256_sub_ps(v1_z_256, v2_z_256);
/* Perform edge tests. */
/* cross (AyBz - AzBy, AzBx -AxBz, AxBy - AyBx) */
__m256 U_x_256 = cross256(v0_v2_y_256, e0_z_256, v0_v2_z_256, e0_y_256);
__m256 U_y_256 = cross256(v0_v2_z_256, e0_x_256, v0_v2_x_256, e0_z_256);
__m256 U_z_256 = cross256(v0_v2_x_256, e0_y_256, v0_v2_y_256, e0_x_256);
/* vertical dot */
__m256 U_256 = _mm256_mul_ps(U_x_256, dirx256);
U_256 = _mm256_fmadd_ps(U_y_256, diry256, U_256);
U_256 = _mm256_fmadd_ps(U_z_256, dirz256, U_256);
__m256 V_x_256 = cross256(v0_v1_y_256, e1_z_256, v0_v1_z_256, e1_y_256);
__m256 V_y_256 = cross256(v0_v1_z_256, e1_x_256, v0_v1_x_256, e1_z_256);
__m256 V_z_256 = cross256(v0_v1_x_256, e1_y_256, v0_v1_y_256, e1_x_256);
/* vertical dot */
__m256 V_256 = _mm256_mul_ps(V_x_256, dirx256);
V_256 = _mm256_fmadd_ps(V_y_256, diry256, V_256);
V_256 = _mm256_fmadd_ps(V_z_256, dirz256, V_256);
__m256 W_x_256 = cross256(v1_v2_y_256, e2_z_256, v1_v2_z_256, e2_y_256);
__m256 W_y_256 = cross256(v1_v2_z_256, e2_x_256, v1_v2_x_256, e2_z_256);
__m256 W_z_256 = cross256(v1_v2_x_256, e2_y_256, v1_v2_y_256, e2_x_256);
/* vertical dot */
__m256 W_256 = _mm256_mul_ps(W_x_256, dirx256);
W_256 = _mm256_fmadd_ps(W_y_256, diry256,W_256);
W_256 = _mm256_fmadd_ps(W_z_256, dirz256,W_256);
__m256i U_256_1 = _mm256_srli_epi32(_mm256_castps_si256(U_256), 31);
__m256i V_256_1 = _mm256_srli_epi32(_mm256_castps_si256(V_256), 31);
__m256i W_256_1 = _mm256_srli_epi32(_mm256_castps_si256(W_256), 31);
__m256i UVW_256_1 = _mm256_add_epi32(_mm256_add_epi32(U_256_1, V_256_1), W_256_1);
const __m256i one256 = _mm256_set1_epi32(1);
const __m256i two256 = _mm256_set1_epi32(2);
__m256i mask_minmaxUVW_256 = _mm256_or_si256(
_mm256_cmpeq_epi32(one256, UVW_256_1),
_mm256_cmpeq_epi32(two256, UVW_256_1));
unsigned char mask_minmaxUVW_pos = _mm256_movemask_ps(_mm256_castsi256_ps(mask_minmaxUVW_256));
if((mask_minmaxUVW_pos & prim_num_mask) == prim_num_mask) { //all bits set
return false;
}
/* Calculate geometry normal and denominator. */
__m256 Ng1_x_256 = cross256(e1_y_256, e0_z_256, e1_z_256, e0_y_256);
__m256 Ng1_y_256 = cross256(e1_z_256, e0_x_256, e1_x_256, e0_z_256);
__m256 Ng1_z_256 = cross256(e1_x_256, e0_y_256, e1_y_256, e0_x_256);
Ng1_x_256 = _mm256_add_ps(Ng1_x_256, Ng1_x_256);
Ng1_y_256 = _mm256_add_ps(Ng1_y_256, Ng1_y_256);
Ng1_z_256 = _mm256_add_ps(Ng1_z_256, Ng1_z_256);
/* vertical dot */
__m256 den_256 = _mm256_mul_ps(Ng1_x_256, dirx256);
den_256 = _mm256_fmadd_ps(Ng1_y_256, diry256,den_256);
den_256 = _mm256_fmadd_ps(Ng1_z_256, dirz256,den_256);
/* Perform depth test. */
__m256 T_256 = _mm256_mul_ps(Ng1_x_256, v0_x_256);
T_256 = _mm256_fmadd_ps(Ng1_y_256, v0_y_256,T_256);
T_256 = _mm256_fmadd_ps(Ng1_z_256, v0_z_256,T_256);
const __m256i c0x80000000 = _mm256_set1_epi32(0x80000000);
__m256i sign_den_256 = _mm256_and_si256(_mm256_castps_si256(den_256), c0x80000000);
__m256 sign_T_256 = _mm256_castsi256_ps(_mm256_xor_si256(_mm256_castps_si256(T_256), sign_den_256));
unsigned char mask_sign_T = _mm256_movemask_ps(sign_T_256);
if(((mask_minmaxUVW_pos | mask_sign_T) & prim_num_mask) == prim_num_mask) {
return false;
2018-11-24 21:01:14 +00:00
}
__m256 xor_signmask_256 = _mm256_castsi256_ps(_mm256_xor_si256(_mm256_castps_si256(den_256), sign_den_256));
ccl_align(32) float den8[8], U8[8], V8[8], T8[8], sign_T8[8], xor_signmask8[8];
ccl_align(32) unsigned int mask_minmaxUVW8[8];
if(visibility == PATH_RAY_SHADOW_OPAQUE) {
__m256i mask_final_256 = _mm256_cmpeq_epi32(mask_minmaxUVW_256, zero256);
__m256i maskden256 = _mm256_cmpeq_epi32(_mm256_castps_si256(den_256), zero256);
__m256i mask0 = _mm256_cmpgt_epi32(zero256, _mm256_castps_si256(sign_T_256));
__m256 rayt_256 = _mm256_set1_ps((*isect)->t);
__m256i mask1 = _mm256_cmpgt_epi32(_mm256_castps_si256(sign_T_256),
_mm256_castps_si256(
_mm256_mul_ps(_mm256_castsi256_ps(_mm256_xor_si256(_mm256_castps_si256(den_256), sign_den_256)), rayt_256)
)
);
mask0 = _mm256_or_si256(mask1, mask0);
mask_final_256 = _mm256_andnot_si256(mask0, mask_final_256); //(~mask_minmaxUVW_pos) &(~mask)
mask_final_256 = _mm256_andnot_si256(maskden256, mask_final_256); //(~mask_minmaxUVW_pos) &(~mask) & (~maskden)
unsigned char mask_final = _mm256_movemask_ps(_mm256_castsi256_ps(mask_final_256));
if((mask_final & prim_num_mask) == 0) {
return false;
}
const int i = __bsf(mask_final);
__m256 inv_den_256 = _mm256_rcp_ps(den_256);
U_256 = _mm256_mul_ps(U_256, inv_den_256);
V_256 = _mm256_mul_ps(V_256, inv_den_256);
T_256 = _mm256_mul_ps(T_256, inv_den_256);
_mm256_store_ps(U8, U_256);
_mm256_store_ps(V8, V_256);
_mm256_store_ps(T8, T_256);
/* NOTE: Here we assume visibility for all triangles in the node is
* the same. */
(*isect)->u = U8[i];
(*isect)->v = V8[i];
(*isect)->t = T8[i];
(*isect)->prim = (prim_addr + i);
(*isect)->object = object;
(*isect)->type = PRIMITIVE_TRIANGLE;
return true;
}
else {
_mm256_store_ps(den8, den_256);
_mm256_store_ps(U8, U_256);
_mm256_store_ps(V8, V_256);
_mm256_store_ps(T8, T_256);
_mm256_store_ps(sign_T8, sign_T_256);
_mm256_store_ps(xor_signmask8, xor_signmask_256);
_mm256_store_si256((__m256i*)mask_minmaxUVW8, mask_minmaxUVW_256);
int ret = false;
if(visibility == PATH_RAY_SHADOW) {
for(int i = 0; i < prim_num; i++) {
if(mask_minmaxUVW8[i]) {
continue;
}
#ifdef __VISIBILITY_FLAG__
if((kernel_tex_fetch(__prim_visibility, (prim_addr + i)) & visibility) == 0) {
continue;
}
#endif
if((sign_T8[i] < 0.0f) ||
(sign_T8[i] > (*isect)->t * xor_signmask8[i]))
{
continue;
}
if(!den8[i]) {
continue;
}
const float inv_den = 1.0f / den8[i];
(*isect)->u = U8[i] * inv_den;
(*isect)->v = V8[i] * inv_den;
(*isect)->t = T8[i] * inv_den;
(*isect)->prim = (prim_addr + i);
(*isect)->object = object;
(*isect)->type = PRIMITIVE_TRIANGLE;
const int prim = kernel_tex_fetch(__prim_index, (*isect)->prim);
int shader = 0;
#ifdef __HAIR__
if(kernel_tex_fetch(__prim_type, (*isect)->prim) & PRIMITIVE_ALL_TRIANGLE)
#endif
{
shader = kernel_tex_fetch(__tri_shader, prim);
}
#ifdef __HAIR__
else {
float4 str = kernel_tex_fetch(__curves, prim);
shader = __float_as_int(str.z);
}
#endif
const int flag = kernel_tex_fetch(__shaders, (shader & SHADER_MASK)).flags;
/* If no transparent shadows, all light is blocked. */
if(!(flag & SD_HAS_TRANSPARENT_SHADOW)) {
return 2;
}
/* If maximum number of hits reached, block all light. */
else if(num_hits == NULL || *num_hits == max_hits) {
return 2;
}
/* Move on to next entry in intersections array. */
ret = true;
(*isect)++;
(*num_hits)++;
(*num_hits_in_instance)++;
(*isect)->t = isect_t;
}
}
else {
for(int i = 0; i < prim_num; i++) {
if(mask_minmaxUVW8[i]) {
continue;
}
#ifdef __VISIBILITY_FLAG__
if((kernel_tex_fetch(__prim_visibility, (prim_addr + i)) & visibility) == 0) {
continue;
}
#endif
if((sign_T8[i] < 0.0f) ||
(sign_T8[i] > (*isect)->t * xor_signmask8[i]))
{
continue;
}
if(!den8[i]) {
continue;
}
const float inv_den = 1.0f / den8[i];
(*isect)->u = U8[i] * inv_den;
(*isect)->v = V8[i] * inv_den;
(*isect)->t = T8[i] * inv_den;
(*isect)->prim = (prim_addr + i);
(*isect)->object = object;
(*isect)->type = PRIMITIVE_TRIANGLE;
ret = true;
}
}
return ret;
}
}
ccl_device_inline int triangle_intersect8(
KernelGlobals *kg,
Intersection **isect,
float3 P,
float3 dir,
uint visibility,
int object,
int prim_addr,
int prim_num,
uint *num_hits,
uint max_hits,
int *num_hits_in_instance,
float isect_t)
{
__m128 tri_a[8], tri_b[8], tri_c[8];
__m256 tritmp[12], tri[12];
__m256 triA[3], triB[3], triC[3];
int i, r;
uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
for(i = 0; i < prim_num; i++) {
tri_a[i] = *(__m128*)&kg->__prim_tri_verts.data[tri_vindex++];
tri_b[i] = *(__m128*)&kg->__prim_tri_verts.data[tri_vindex++];
tri_c[i] = *(__m128*)&kg->__prim_tri_verts.data[tri_vindex++];
}
//create 9 or 12 placeholders
tri[0] = _mm256_castps128_ps256(tri_a[0]); //_mm256_zextps128_ps256
tri[1] = _mm256_castps128_ps256(tri_b[0]);//_mm256_zextps128_ps256
tri[2] = _mm256_castps128_ps256(tri_c[0]);//_mm256_zextps128_ps256
tri[3] = _mm256_castps128_ps256(tri_a[1]); //_mm256_zextps128_ps256
tri[4] = _mm256_castps128_ps256(tri_b[1]);//_mm256_zextps128_ps256
tri[5] = _mm256_castps128_ps256(tri_c[1]);//_mm256_zextps128_ps256
tri[6] = _mm256_castps128_ps256(tri_a[2]); //_mm256_zextps128_ps256
tri[7] = _mm256_castps128_ps256(tri_b[2]);//_mm256_zextps128_ps256
tri[8] = _mm256_castps128_ps256(tri_c[2]);//_mm256_zextps128_ps256
if(prim_num > 3) {
tri[9] = _mm256_castps128_ps256(tri_a[3]); //_mm256_zextps128_ps256
tri[10] = _mm256_castps128_ps256(tri_b[3]);//_mm256_zextps128_ps256
tri[11] = _mm256_castps128_ps256(tri_c[3]);//_mm256_zextps128_ps256
}
for(i = 4, r = 0; i < prim_num; i ++, r += 3) {
tri[r] = _mm256_insertf128_ps(tri[r] , tri_a[i], 1);
tri[r + 1] = _mm256_insertf128_ps(tri[r + 1], tri_b[i], 1);
tri[r + 2] = _mm256_insertf128_ps(tri[r + 2], tri_c[i], 1);
}
//------------------------------------------------
//0! Xa0 Ya0 Za0 1 Xa4 Ya4 Za4 1
//1! Xb0 Yb0 Zb0 1 Xb4 Yb4 Zb4 1
//2! Xc0 Yc0 Zc0 1 Xc4 Yc4 Zc4 1
//3! Xa1 Ya1 Za1 1 Xa5 Ya5 Za5 1
//4! Xb1 Yb1 Zb1 1 Xb5 Yb5 Zb5 1
//5! Xc1 Yc1 Zc1 1 Xc5 Yc5 Zc5 1
//6! Xa2 Ya2 Za2 1 Xa6 Ya6 Za6 1
//7! Xb2 Yb2 Zb2 1 Xb6 Yb6 Zb6 1
//8! Xc2 Yc2 Zc2 1 Xc6 Yc6 Zc6 1
//9! Xa3 Ya3 Za3 1 Xa7 Ya7 Za7 1
//10! Xb3 Yb3 Zb3 1 Xb7 Yb7 Zb7 1
//11! Xc3 Yc3 Zc3 1 Xc7 Yc7 Zc7 1
//"transpose"
tritmp[0] = _mm256_unpacklo_ps(tri[0], tri[3]); //0! Xa0 Xa1 Ya0 Ya1 Xa4 Xa5 Ya4 Ya5
tritmp[1] = _mm256_unpackhi_ps(tri[0], tri[3]); //1! Za0 Za1 1 1 Za4 Za5 1 1
tritmp[2] = _mm256_unpacklo_ps(tri[6], tri[9]); //2! Xa2 Xa3 Ya2 Ya3 Xa6 Xa7 Ya6 Ya7
tritmp[3] = _mm256_unpackhi_ps(tri[6], tri[9]); //3! Za2 Za3 1 1 Za6 Za7 1 1
tritmp[4] = _mm256_unpacklo_ps(tri[1], tri[4]); //4! Xb0 Xb1 Yb0 Yb1 Xb4 Xb5 Yb4 Yb5
tritmp[5] = _mm256_unpackhi_ps(tri[1], tri[4]); //5! Zb0 Zb1 1 1 Zb4 Zb5 1 1
tritmp[6] = _mm256_unpacklo_ps(tri[7], tri[10]); //6! Xb2 Xb3 Yb2 Yb3 Xb6 Xb7 Yb6 Yb7
tritmp[7] = _mm256_unpackhi_ps(tri[7], tri[10]); //7! Zb2 Zb3 1 1 Zb6 Zb7 1 1
tritmp[8] = _mm256_unpacklo_ps(tri[2], tri[5]); //8! Xc0 Xc1 Yc0 Yc1 Xc4 Xc5 Yc4 Yc5
tritmp[9] = _mm256_unpackhi_ps(tri[2], tri[5]); //9! Zc0 Zc1 1 1 Zc4 Zc5 1 1
tritmp[10] = _mm256_unpacklo_ps(tri[8], tri[11]); //10! Xc2 Xc3 Yc2 Yc3 Xc6 Xc7 Yc6 Yc7
tritmp[11] = _mm256_unpackhi_ps(tri[8], tri[11]); //11! Zc2 Zc3 1 1 Zc6 Zc7 1 1
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
triA[0] = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[0]), _mm256_castps_pd(tritmp[2]))); // Xa0 Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7
triA[1] = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(tritmp[0]), _mm256_castps_pd(tritmp[2]))); // Ya0 Ya1 Ya2 Ya3 Ya4 Ya5 Ya6 Ya7
triA[2] = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[1]), _mm256_castps_pd(tritmp[3]))); // Za0 Za1 Za2 Za3 Za4 Za5 Za6 Za7
triB[0] = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[4]), _mm256_castps_pd(tritmp[6]))); // Xb0 Xb1 Xb2 Xb3 Xb4 Xb5 Xb5 Xb7
triB[1] = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(tritmp[4]), _mm256_castps_pd(tritmp[6]))); // Yb0 Yb1 Yb2 Yb3 Yb4 Yb5 Yb5 Yb7
triB[2] = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[5]), _mm256_castps_pd(tritmp[7]))); // Zb0 Zb1 Zb2 Zb3 Zb4 Zb5 Zb5 Zb7
triC[0] = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[8]), _mm256_castps_pd(tritmp[10]))); //Xc0 Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7
triC[1] = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(tritmp[8]), _mm256_castps_pd(tritmp[10]))); //Yc0 Yc1 Yc2 Yc3 Yc4 Yc5 Yc6 Yc7
triC[2] = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[9]), _mm256_castps_pd(tritmp[11]))); //Zc0 Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int result = ray_triangle_intersect8(kg, P,
dir,
isect,
visibility, object,
triA,
triB,
triC,
prim_addr,
prim_num,
num_hits,
max_hits,
num_hits_in_instance,
isect_t);
return result;
}
#endif /* __KERNEL_AVX2__ */
/* Special ray intersection routines for subsurface scattering. In that case we
* only want to intersect with primitives in the same object, and if case of
* multiple hits we pick a single random primitive as the intersection point.
* Returns whether traversal should be stopped.
*/
#ifdef __BVH_LOCAL__
ccl_device_inline bool triangle_intersect_local(
KernelGlobals *kg,
LocalIntersection *local_isect,
float3 P,
float3 dir,
int object,
int local_object,
int prim_addr,
float tmax,
uint *lcg_state,
int max_hits)
{
/* Only intersect with matching object, for instanced objects we
* already know we are only intersecting the right object. */
if(object == OBJECT_NONE) {
if(kernel_tex_fetch(__prim_object, prim_addr) != local_object) {
return false;
}
}
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
const ssef *ssef_verts = (ssef*)&kg->__prim_tri_verts.data[tri_vindex];
#else
const float3 tri_a = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+0)),
tri_b = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+1)),
tri_c = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+2));
#endif
float t, u, v;
if(!ray_triangle_intersect(P,
dir,
tmax,
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
ssef_verts,
#else
tri_a, tri_b, tri_c,
#endif
&u, &v, &t))
{
return false;
}
/* If no actual hit information is requested, just return here. */
if(max_hits == 0) {
return true;
}
int hit;
if(lcg_state) {
/* Record up to max_hits intersections. */
for(int i = min(max_hits, local_isect->num_hits) - 1; i >= 0; --i) {
if(local_isect->hits[i].t == t) {
return false;
}
}
local_isect->num_hits++;
if(local_isect->num_hits <= max_hits) {
hit = local_isect->num_hits - 1;
}
else {
/* reservoir sampling: if we are at the maximum number of
* hits, randomly replace element or skip it */
hit = lcg_step_uint(lcg_state) % local_isect->num_hits;
if(hit >= max_hits)
return false;
}
}
else {
/* Record closest intersection only. */
if(local_isect->num_hits && t > local_isect->hits[0].t) {
return false;
}
hit = 0;
local_isect->num_hits = 1;
}
/* Record intersection. */
Intersection *isect = &local_isect->hits[hit];
isect->prim = prim_addr;
isect->object = object;
isect->type = PRIMITIVE_TRIANGLE;
isect->u = u;
isect->v = v;
isect->t = t;
/* Record geometric normal. */
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
const float3 tri_a = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+0)),
tri_b = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+1)),
tri_c = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+2));
#endif
local_isect->Ng[hit] = normalize(cross(tri_b - tri_a, tri_c - tri_a));
return false;
}
#endif /* __BVH_LOCAL__ */
/* Refine triangle intersection to more precise hit point. For rays that travel
* far the precision is often not so good, this reintersects the primitive from
* a closer distance. */
/* Reintersections uses the paper:
*
* Tomas Moeller
* Fast, minimum storage ray/triangle intersection
* http://www.cs.virginia.edu/~gfx/Courses/2003/ImageSynthesis/papers/Acceleration/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf
*/
ccl_device_inline float3 triangle_refine(KernelGlobals *kg,
ShaderData *sd,
const Intersection *isect,
const Ray *ray)
{
float3 P = ray->P;
float3 D = ray->D;
float t = isect->t;
#ifdef __INTERSECTION_REFINE__
if(isect->object != OBJECT_NONE) {
if(UNLIKELY(t == 0.0f)) {
return P;
}
# ifdef __OBJECT_MOTION__
2017-02-16 11:24:13 +00:00
Transform tfm = sd->ob_itfm;
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
# endif
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D*t);
D = normalize_len(D, &t);
}
P = P + D*t;
Cycles: Reduce memory usage by de-duplicating triangle storage There are several internal changes for this: First idea is to make __tri_verts to behave similar to __tri_storage, meaning, __tri_verts array now contains all vertices of all triangles instead of just mesh vertices. This saves some lookup when reading triangle coordinates in functions like triangle_normal(). In order to make it efficient needed to store global triangle offset somewhere. So no __tri_vindex.w contains a global triangle index which can be used to read triangle vertices. Additionally, the order of vertices in that array is aligned with primitives from BVH. This is needed to keep cache as much coherent as possible for BVH traversal. This causes some extra tricks needed to fill the array in and deal with True Displacement but those trickery is fully required to prevent noticeable slowdown. Next idea was to use this __tri_verts instead of __tri_storage in intersection code. Unfortunately, this is quite tricky to do without noticeable speed loss. Mainly this loss is caused by extra lookup happening to access vertex coordinate. Fortunately, tricks here and there (i,e, some types changes to avoid casts which are not really coming for free) reduces those losses to an acceptable level. So now they are within couple of percent only, On a positive site we've achieved: - Few percent of memory save with triangle-only scenes. Actual save in this case is close to size of all vertices. On a more fine-subdivided scenes this benefit might become more obvious. - Huge memory save of hairy scenes. For example, on koro.blend there is about 20% memory save. Similar figure for bunny.blend. This memory save was the main goal of this commit to move forward with Hair BVH which required more memory per BVH node. So while this sounds exciting, this memory optimization will become invisible by upcoming Hair BVH work. But again on a positive side, we can add an option to NOT use Hair BVH and then we'll have same-ish render times as we've got currently but will have this 20% memory benefit on hairy scenes.
2016-06-10 14:13:50 +00:00
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, isect->prim);
const float4 tri_a = kernel_tex_fetch(__prim_tri_verts, tri_vindex+0),
tri_b = kernel_tex_fetch(__prim_tri_verts, tri_vindex+1),
tri_c = kernel_tex_fetch(__prim_tri_verts, tri_vindex+2);
float3 edge1 = make_float3(tri_a.x - tri_c.x, tri_a.y - tri_c.y, tri_a.z - tri_c.z);
float3 edge2 = make_float3(tri_b.x - tri_c.x, tri_b.y - tri_c.y, tri_b.z - tri_c.z);
float3 tvec = make_float3(P.x - tri_c.x, P.y - tri_c.y, P.z - tri_c.z);
float3 qvec = cross(tvec, edge1);
float3 pvec = cross(D, edge2);
float det = dot(edge1, pvec);
if(det != 0.0f) {
/* If determinant is zero it means ray lies in the plane of
* the triangle. It is possible in theory due to watertight
2016-07-31 07:41:05 +00:00
* nature of triangle intersection. For such cases we simply
* don't refine intersection hoping it'll go all fine.
*/
float rt = dot(edge2, qvec) / det;
P = P + D*rt;
}
if(isect->object != OBJECT_NONE) {
# ifdef __OBJECT_MOTION__
2017-02-16 11:24:13 +00:00
Transform tfm = sd->ob_tfm;
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
# endif
P = transform_point(&tfm, P);
}
return P;
#else
return P + D*t;
#endif
}
/* Same as above, except that isect->t is assumed to be in object space for
* instancing.
*/
ccl_device_inline float3 triangle_refine_local(KernelGlobals *kg,
ShaderData *sd,
const Intersection *isect,
const Ray *ray)
{
float3 P = ray->P;
float3 D = ray->D;
float t = isect->t;
if(isect->object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
2017-02-16 11:24:13 +00:00
Transform tfm = sd->ob_itfm;
#else
Transform tfm = object_fetch_transform(kg,
isect->object,
OBJECT_INVERSE_TRANSFORM);
#endif
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D);
D = normalize(D);
}
P = P + D*t;
#ifdef __INTERSECTION_REFINE__
Cycles: Reduce memory usage by de-duplicating triangle storage There are several internal changes for this: First idea is to make __tri_verts to behave similar to __tri_storage, meaning, __tri_verts array now contains all vertices of all triangles instead of just mesh vertices. This saves some lookup when reading triangle coordinates in functions like triangle_normal(). In order to make it efficient needed to store global triangle offset somewhere. So no __tri_vindex.w contains a global triangle index which can be used to read triangle vertices. Additionally, the order of vertices in that array is aligned with primitives from BVH. This is needed to keep cache as much coherent as possible for BVH traversal. This causes some extra tricks needed to fill the array in and deal with True Displacement but those trickery is fully required to prevent noticeable slowdown. Next idea was to use this __tri_verts instead of __tri_storage in intersection code. Unfortunately, this is quite tricky to do without noticeable speed loss. Mainly this loss is caused by extra lookup happening to access vertex coordinate. Fortunately, tricks here and there (i,e, some types changes to avoid casts which are not really coming for free) reduces those losses to an acceptable level. So now they are within couple of percent only, On a positive site we've achieved: - Few percent of memory save with triangle-only scenes. Actual save in this case is close to size of all vertices. On a more fine-subdivided scenes this benefit might become more obvious. - Huge memory save of hairy scenes. For example, on koro.blend there is about 20% memory save. Similar figure for bunny.blend. This memory save was the main goal of this commit to move forward with Hair BVH which required more memory per BVH node. So while this sounds exciting, this memory optimization will become invisible by upcoming Hair BVH work. But again on a positive side, we can add an option to NOT use Hair BVH and then we'll have same-ish render times as we've got currently but will have this 20% memory benefit on hairy scenes.
2016-06-10 14:13:50 +00:00
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, isect->prim);
const float4 tri_a = kernel_tex_fetch(__prim_tri_verts, tri_vindex+0),
tri_b = kernel_tex_fetch(__prim_tri_verts, tri_vindex+1),
tri_c = kernel_tex_fetch(__prim_tri_verts, tri_vindex+2);
float3 edge1 = make_float3(tri_a.x - tri_c.x, tri_a.y - tri_c.y, tri_a.z - tri_c.z);
float3 edge2 = make_float3(tri_b.x - tri_c.x, tri_b.y - tri_c.y, tri_b.z - tri_c.z);
float3 tvec = make_float3(P.x - tri_c.x, P.y - tri_c.y, P.z - tri_c.z);
float3 qvec = cross(tvec, edge1);
float3 pvec = cross(D, edge2);
float det = dot(edge1, pvec);
if(det != 0.0f) {
/* If determinant is zero it means ray lies in the plane of
* the triangle. It is possible in theory due to watertight
* nature of triangle intersection. For such cases we simply
* don't refine intersection hoping it'll go all fine.
*/
float rt = dot(edge2, qvec) / det;
P = P + D*rt;
}
#endif /* __INTERSECTION_REFINE__ */
if(isect->object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
2017-02-16 11:24:13 +00:00
Transform tfm = sd->ob_tfm;
#else
Transform tfm = object_fetch_transform(kg,
isect->object,
OBJECT_TRANSFORM);
#endif
P = transform_point(&tfm, P);
}
return P;
}
CCL_NAMESPACE_END