blender/intern/cycles/kernel/kernel_light.h

367 lines
9.6 KiB
C
Raw Normal View History

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
typedef struct LightSample {
float3 P;
float3 D;
float3 Ng;
float t;
int object;
int prim;
int shader;
LightType type;
} LightSample;
/* Regular Light */
__device float3 disk_light_sample(float3 v, float randu, float randv)
{
float3 ru, rv;
make_orthonormals(v, &ru, &rv);
to_unit_disk(&randu, &randv);
return ru*randu + rv*randv;
}
__device float3 distant_light_sample(float3 D, float size, float randu, float randv)
{
return normalize(D + disk_light_sample(D, randu, randv)*size);
}
__device float3 sphere_light_sample(float3 P, float3 center, float size, float randu, float randv)
{
return disk_light_sample(normalize(P - center), randu, randv)*size;
}
__device float3 area_light_sample(float3 axisu, float3 axisv, float randu, float randv)
{
randu = randu - 0.5f;
randv = randv - 0.5f;
return axisu*randu + axisv*randv;
}
__device float3 background_light_sample(KernelGlobals *kg, float randu, float randv, float *pdf)
{
/* for the following, the CDF values are actually a pair of floats, with the
function value as X and the actual CDF as Y. The last entry's function
value is the CDF total. */
int res = kernel_data.integrator.pdf_background_res;
int cdf_count = res + 1;
/* this is basically std::lower_bound as used by pbrt */
int first = 0;
int count = res;
while(count > 0) {
int step = count >> 1;
int middle = first + step;
if(kernel_tex_fetch(__light_background_marginal_cdf, middle).y < randv) {
first = middle + 1;
count -= step + 1;
}
else
count = step;
}
int index_v = max(0, first - 1);
kernel_assert(index_v >= 0 && index_v < res);
float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
float2 cdf_next_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v + 1);
float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res);
/* importance-sampled V direction */
float dv = (randv - cdf_v.y) / (cdf_next_v.y - cdf_v.y);
float v = (index_v + dv) / res;
/* this is basically std::lower_bound as used by pbrt */
first = 0;
count = res;
while(count > 0) {
int step = count >> 1;
int middle = first + step;
if(kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + middle).y < randu) {
first = middle + 1;
count -= step + 1;
}
else
count = step;
}
int index_u = max(0, first - 1);
kernel_assert(index_u >= 0 && index_u < res);
float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + index_u);
float2 cdf_next_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + index_u + 1);
float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + res);
/* importance-sampled U direction */
float du = (randu - cdf_u.y) / (cdf_next_u.y - cdf_u.y);
float u = (index_u + du) / res;
/* spherical coordinates */
float theta = v * M_PI_F;
float phi = u * M_PI_F * 2.0f;
/* compute pdf */
float denom = cdf_last_u.x * cdf_last_v.x;
float sin_theta = sinf(theta);
if(sin_theta == 0.0f || denom == 0.0f)
*pdf = 0.0f;
else
*pdf = (cdf_u.x * cdf_v.x)/(2.0f * M_PI_F * M_PI_F * sin_theta * denom);
*pdf *= kernel_data.integrator.pdf_lights;
/* compute direction */
return spherical_to_direction(theta, phi);
}
__device float background_light_pdf(KernelGlobals *kg, float3 direction)
{
float2 uv = direction_to_equirectangular(direction);
int res = kernel_data.integrator.pdf_background_res;
float sin_theta = sinf(uv.y * M_PI_F);
if(sin_theta == 0.0f)
return 0.0f;
int index_u = clamp((int)(uv.x * res), 0, res - 1);
int index_v = clamp((int)(uv.y * res), 0, res - 1);
/* pdfs in V direction */
float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * (res + 1) + res);
float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res);
float denom = cdf_last_u.x * cdf_last_v.x;
if(denom == 0.0f)
return 0.0f;
/* pdfs in U direction */
float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * (res + 1) + index_u);
float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
float pdf = (cdf_u.x * cdf_v.x)/(2.0f * M_PI_F * M_PI_F * sin_theta * denom);
return pdf * kernel_data.integrator.pdf_lights;
}
__device void regular_light_sample(KernelGlobals *kg, int point,
float randu, float randv, float3 P, LightSample *ls, float *pdf)
{
float4 data0 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 0);
float4 data1 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 1);
LightType type = (LightType)__float_as_int(data0.x);
ls->type = type;
if(type == LIGHT_DISTANT) {
/* distant light */
float3 D = make_float3(data0.y, data0.z, data0.w);
float size = data1.y;
if(size > 0.0f)
D = distant_light_sample(D, size, randu, randv);
ls->P = D;
ls->Ng = D;
ls->D = -D;
ls->t = FLT_MAX;
}
#ifdef __BACKGROUND_MIS__
else if(type == LIGHT_BACKGROUND) {
/* infinite area light (e.g. light dome or env light) */
float3 D = background_light_sample(kg, randu, randv, pdf);
ls->P = D;
ls->Ng = D;
ls->D = -D;
ls->t = FLT_MAX;
}
#endif
else {
ls->P = make_float3(data0.y, data0.z, data0.w);
if(type == LIGHT_POINT) {
float size = data1.y;
/* sphere light */
if(size > 0.0f)
ls->P += sphere_light_sample(P, ls->P, size, randu, randv);
ls->Ng = normalize(P - ls->P);
}
else {
/* area light */
float4 data2 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 2);
float4 data3 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 3);
float3 axisu = make_float3(data1.y, data1.z, data2.w);
float3 axisv = make_float3(data2.y, data2.z, data2.w);
float3 D = make_float3(data3.y, data3.z, data3.w);
ls->P += area_light_sample(axisu, axisv, randu, randv);
ls->Ng = D;
}
ls->t = 0.0f;
}
ls->shader = __float_as_int(data1.x);
ls->object = ~0;
ls->prim = ~0;
}
__device float regular_light_pdf(KernelGlobals *kg,
const float3 Ng, const float3 I, float t)
{
float pdf = kernel_data.integrator.pdf_lights;
if(t == FLT_MAX)
return pdf;
float cos_pi = dot(Ng, I);
if(cos_pi <= 0.0f)
return 0.0f;
return t*t*pdf/cos_pi;
}
/* Triangle Light */
__device void triangle_light_sample(KernelGlobals *kg, int prim, int object,
float randu, float randv, LightSample *ls)
{
/* triangle, so get position, normal, shader */
ls->P = triangle_sample_MT(kg, prim, randu, randv);
ls->Ng = triangle_normal_MT(kg, prim, &ls->shader);
ls->object = object;
ls->prim = prim;
ls->t = 0.0f;
ls->type = LIGHT_AREA;
#ifdef __INSTANCING__
/* instance transform */
if(ls->object >= 0) {
object_position_transform(kg, ls->object, &ls->P);
object_normal_transform(kg, ls->object, &ls->Ng);
}
#endif
}
__device float triangle_light_pdf(KernelGlobals *kg,
const float3 Ng, const float3 I, float t)
{
float cos_pi = fabsf(dot(Ng, I));
if(cos_pi == 0.0f)
return 0.0f;
return (t*t*kernel_data.integrator.pdf_triangles)/cos_pi;
}
/* Light Distribution */
__device int light_distribution_sample(KernelGlobals *kg, float randt)
{
/* this is basically std::upper_bound as used by pbrt, to find a point light or
triangle to emit from, proportional to area. a good improvement would be to
also sample proportional to power, though it's not so well defined with
OSL shaders. */
int first = 0;
int len = kernel_data.integrator.num_distribution + 1;
while(len > 0) {
int half_len = len >> 1;
int middle = first + half_len;
if(randt < kernel_tex_fetch(__light_distribution, middle).x) {
len = half_len;
}
else {
first = middle + 1;
len = len - half_len - 1;
}
}
first = max(0, first-1);
kernel_assert(first >= 0 && first < kernel_data.integrator.num_distribution);
return first;
}
/* Generic Light */
__device void light_sample(KernelGlobals *kg, float randt, float randu, float randv, float3 P, LightSample *ls, float *pdf)
{
/* sample index */
int index = light_distribution_sample(kg, randt);
/* fetch light data */
float4 l = kernel_tex_fetch(__light_distribution, index);
int prim = __float_as_int(l.y);
if(prim >= 0) {
int object = __float_as_int(l.w);
triangle_light_sample(kg, prim, object, randu, randv, ls);
}
else {
int point = -prim-1;
regular_light_sample(kg, point, randu, randv, P, ls, pdf);
}
/* compute incoming direction and distance */
if(ls->t != FLT_MAX)
ls->D = normalize_len(ls->P - P, &ls->t);
}
__device float light_sample_pdf(KernelGlobals *kg, LightSample *ls, float3 I, float t)
{
float pdf;
if(ls->prim != ~0)
pdf = triangle_light_pdf(kg, ls->Ng, I, t);
else
pdf = regular_light_pdf(kg, ls->Ng, I, t);
return pdf;
}
__device void light_select(KernelGlobals *kg, int index, float randu, float randv, float3 P, LightSample *ls, float *pdf)
{
regular_light_sample(kg, index, randu, randv, P, ls, pdf);
}
__device float light_select_pdf(KernelGlobals *kg, LightSample *ls, float3 I, float t)
{
return regular_light_pdf(kg, ls->Ng, I, t);
}
CCL_NAMESPACE_END