blender/intern/cycles/kernel/closure/bssrdf.h

249 lines
6.2 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __KERNEL_BSSRDF_H__
#define __KERNEL_BSSRDF_H__
CCL_NAMESPACE_BEGIN
ccl_device int bssrdf_setup(ShaderClosure *sc, ClosureType type)
{
if(sc->data0 < BSSRDF_MIN_RADIUS) {
/* revert to diffuse BSDF if radius too small */
sc->data0 = 0.0f;
sc->data1 = 0.0f;
int flag = bsdf_diffuse_setup(sc);
sc->type = CLOSURE_BSDF_BSSRDF_ID;
return flag;
}
else {
sc->data1 = saturate(sc->data1); /* texture blur */
sc->T.x = saturate(sc->T.x); /* sharpness */
sc->type = type;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF;
}
}
/* Planar Truncated Gaussian
*
* Note how this is different from the typical gaussian, this one integrates
* to 1 over the plane (where you get an extra 2*pi*x factor). We are lucky
* that integrating x*exp(-x) gives a nice closed form solution. */
/* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
#define GAUSS_TRUNCATE 12.46f
ccl_device float bssrdf_gaussian_eval(ShaderClosure *sc, float r)
{
/* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
* = 1 - exp(-Rm*Rm/(2*v)) */
const float v = sc->data0*sc->data0*(0.25f*0.25f);
const float Rm = sqrtf(v*GAUSS_TRUNCATE);
if(r >= Rm)
return 0.0f;
return expf(-r*r/(2.0f*v))/(2.0f*M_PI_F*v);
}
ccl_device float bssrdf_gaussian_pdf(ShaderClosure *sc, float r)
{
/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);
return bssrdf_gaussian_eval(sc, r) * (1.0f/(area_truncated));
}
ccl_device void bssrdf_gaussian_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
/* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
* r = sqrt(-2*v*logf(xi)) */
const float v = sc->data0*sc->data0*(0.25f*0.25f);
const float Rm = sqrtf(v*GAUSS_TRUNCATE);
/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);
/* r(xi) */
const float r_squared = -2.0f*v*logf(1.0f - xi*area_truncated);
*r = sqrtf(r_squared);
/* h^2 + r^2 = Rm^2 */
*h = sqrtf(Rm*Rm - r_squared);
}
/* Planar Cubic BSSRDF falloff
*
* This is basically (Rm - x)^3, with some factors to normalize it. For sampling
* we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
* far as I can tell has no closed form solution. So we get an iterative solution
* instead with newton-raphson. */
ccl_device float bssrdf_cubic_eval(ShaderClosure *sc, float r)
{
const float sharpness = sc->T.x;
if(sharpness == 0.0f) {
const float Rm = sc->data0;
if(r >= Rm)
return 0.0f;
/* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
const float Rm5 = (Rm*Rm) * (Rm*Rm) * Rm;
const float f = Rm - r;
const float num = f*f*f;
return (10.0f * num) / (Rm5 * M_PI_F);
}
else {
float Rm = sc->data0*(1.0f + sharpness);
if(r >= Rm)
return 0.0f;
/* custom variation with extra sharpness, to match the previous code */
const float y = 1.0f/(1.0f + sharpness);
float Rmy, ry, ryinv;
if(sharpness == 1.0f) {
Rmy = sqrtf(Rm);
ry = sqrtf(r);
ryinv = (ry > 0.0f)? 1.0f/ry: 0.0f;
}
else {
Rmy = powf(Rm, y);
ry = powf(r, y);
ryinv = (r > 0.0f)? powf(r, 2.0f*y - 2.0f): 0.0f;
}
const float Rmy5 = (Rmy*Rmy) * (Rmy*Rmy) * Rmy;
const float f = Rmy - ry;
const float num = f*(f*f)*(y*ryinv);
return (10.0f * num) / (Rmy5 * M_PI_F);
}
}
ccl_device float bssrdf_cubic_pdf(ShaderClosure *sc, float r)
{
return bssrdf_cubic_eval(sc, r);
}
/* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
ccl_device float bssrdf_cubic_quintic_root_find(float xi)
{
/* newton-raphson iteration, usually succeeds in 2-4 iterations, except
* outside 0.02 ... 0.98 where it can go up to 10, so overall performance
* should not be too bad */
const float tolerance = 1e-6f;
const int max_iteration_count = 10;
float x = 0.25f;
int i;
for(i = 0; i < max_iteration_count; i++) {
float x2 = x*x;
float x3 = x2*x;
float nx = (1.0f - x);
float f = 10.0f*x2 - 20.0f*x3 + 15.0f*x2*x2 - 4.0f*x2*x3 - xi;
float f_ = 20.0f*(x*nx)*(nx*nx);
if(fabsf(f) < tolerance || f_ == 0.0f)
break;
x = saturate(x - f/f_);
}
return x;
}
ccl_device void bssrdf_cubic_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
float Rm = sc->data0;
float r_ = bssrdf_cubic_quintic_root_find(xi);
const float sharpness = sc->T.x;
if(sharpness != 0.0f) {
r_ = powf(r_, 1.0f + sharpness);
Rm *= (1.0f + sharpness);
}
r_ *= Rm;
*r = r_;
/* h^2 + r^2 = Rm^2 */
*h = sqrtf(Rm*Rm - r_*r_);
}
/* None BSSRDF falloff
*
* Samples distributed over disk with no falloff, for reference. */
ccl_device float bssrdf_none_eval(ShaderClosure *sc, float r)
{
const float Rm = sc->data0;
return (r < Rm)? 1.0f: 0.0f;
}
ccl_device float bssrdf_none_pdf(ShaderClosure *sc, float r)
{
/* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
const float Rm = sc->data0;
const float area = (M_PI_F*Rm*Rm);
return bssrdf_none_eval(sc, r) / area;
}
ccl_device void bssrdf_none_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
/* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
* r = sqrt(xi)*Rm */
const float Rm = sc->data0;
const float r_ = sqrtf(xi)*Rm;
*r = r_;
/* h^2 + r^2 = Rm^2 */
*h = sqrtf(Rm*Rm - r_*r_);
}
/* Generic */
ccl_device void bssrdf_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
bssrdf_cubic_sample(sc, xi, r, h);
else
bssrdf_gaussian_sample(sc, xi, r, h);
}
ccl_device float bssrdf_pdf(ShaderClosure *sc, float r)
{
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
return bssrdf_cubic_pdf(sc, r);
else
return bssrdf_gaussian_pdf(sc, r);
}
CCL_NAMESPACE_END
#endif /* __KERNEL_BSSRDF_H__ */