forked from bartvdbraak/blender
136 lines
4.4 KiB
C
136 lines
4.4 KiB
C
|
/*
|
||
|
* Adapted from Open Shading Language with this license:
|
||
|
*
|
||
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
||
|
* All Rights Reserved.
|
||
|
*
|
||
|
* Modifications Copyright 2011, Blender Foundation.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are
|
||
|
* met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of Sony Pictures Imageworks nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived from
|
||
|
* this software without specific prior written permission.
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#ifndef __OSL_BSDF_H__
|
||
|
#define __OSL_BSDF_H__
|
||
|
|
||
|
CCL_NAMESPACE_BEGIN
|
||
|
|
||
|
__device float fresnel_dielectric(float eta, const float3 N,
|
||
|
const float3 I, float3 *R, float3 *T,
|
||
|
#ifdef __RAY_DIFFERENTIALS__
|
||
|
const float3 dIdx, const float3 dIdy,
|
||
|
float3 *dRdx, float3 *dRdy,
|
||
|
float3 *dTdx, float3 *dTdy,
|
||
|
#endif
|
||
|
bool *is_inside)
|
||
|
{
|
||
|
float cos = dot(N, I), neta;
|
||
|
float3 Nn;
|
||
|
// compute reflection
|
||
|
*R =(2 * cos)* N - I;
|
||
|
#ifdef __RAY_DIFFERENTIALS__
|
||
|
*dRdx = (2 * dot(N, dIdx)) * N - dIdx;
|
||
|
*dRdy = (2 * dot(N, dIdy)) * N - dIdy;
|
||
|
#endif
|
||
|
// check which side of the surface we are on
|
||
|
if(cos > 0) {
|
||
|
// we are on the outside of the surface, going in
|
||
|
neta = 1 / eta;
|
||
|
Nn = N;
|
||
|
*is_inside = false;
|
||
|
} else {
|
||
|
// we are inside the surface,
|
||
|
cos = -cos;
|
||
|
neta = eta;
|
||
|
Nn = -N;
|
||
|
*is_inside = true;
|
||
|
}
|
||
|
*R =(2 * cos)* Nn - I;
|
||
|
float arg = 1 -(neta * neta *(1 -(cos * cos)));
|
||
|
if(arg < 0) {
|
||
|
*T= make_float3(0.0f, 0.0f, 0.0f);
|
||
|
#ifdef __RAY_DIFFERENTIALS__
|
||
|
*dTdx= make_float3(0.0f, 0.0f, 0.0f);
|
||
|
*dTdy= make_float3(0.0f, 0.0f, 0.0f);
|
||
|
#endif
|
||
|
return 1; // total internal reflection
|
||
|
} else {
|
||
|
float dnp = sqrtf(arg);
|
||
|
float nK =(neta * cos)- dnp;
|
||
|
*T = -(neta * I)+(nK * Nn);
|
||
|
#ifdef __RAY_DIFFERENTIALS__
|
||
|
*dTdx = -(neta * dIdx) + ((neta - neta * neta * cos / dnp) * dot(dIdx, Nn)) * Nn;
|
||
|
*dTdy = -(neta * dIdy) + ((neta - neta * neta * cos / dnp) * dot(dIdy, Nn)) * Nn;
|
||
|
#endif
|
||
|
// compute Fresnel terms
|
||
|
float cosTheta1 = cos; // N.R
|
||
|
float cosTheta2 = -dot(Nn, *T);
|
||
|
float pPara =(cosTheta1 - eta * cosTheta2)/(cosTheta1 + eta * cosTheta2);
|
||
|
float pPerp =(eta * cosTheta1 - cosTheta2)/(eta * cosTheta1 + cosTheta2);
|
||
|
return 0.5f * (pPara * pPara + pPerp * pPerp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__device float fresnel_dielectric_cos(float cosi, float eta)
|
||
|
{
|
||
|
// compute fresnel reflectance without explicitly computing
|
||
|
// the refracted direction
|
||
|
float c = fabsf(cosi);
|
||
|
float g = eta * eta - 1 + c * c;
|
||
|
if(g > 0) {
|
||
|
g = sqrtf(g);
|
||
|
float A =(g - c)/(g + c);
|
||
|
float B =(c *(g + c)- 1)/(c *(g - c)+ 1);
|
||
|
return 0.5f * A * A *(1 + B * B);
|
||
|
}
|
||
|
return 1.0f; // TIR(no refracted component)
|
||
|
}
|
||
|
|
||
|
__device float fresnel_conductor(float cosi, float eta, float k)
|
||
|
{
|
||
|
float tmp_f = eta * eta + k * k;
|
||
|
float tmp = tmp_f * cosi * cosi;
|
||
|
float Rparl2 =(tmp -(2.0f * eta * cosi)+ 1)/
|
||
|
(tmp +(2.0f * eta * cosi)+ 1);
|
||
|
float Rperp2 =(tmp_f -(2.0f * eta * cosi)+ cosi * cosi)/
|
||
|
(tmp_f +(2.0f * eta * cosi)+ cosi * cosi);
|
||
|
return(Rparl2 + Rperp2) * 0.5f;
|
||
|
}
|
||
|
|
||
|
__device float smooth_step(float edge0, float edge1, float x)
|
||
|
{
|
||
|
float result;
|
||
|
if(x < edge0) result = 0.0f;
|
||
|
else if(x >= edge1) result = 1.0f;
|
||
|
else {
|
||
|
float t = (x - edge0)/(edge1 - edge0);
|
||
|
result = (3.0f-2.0f*t)*(t*t);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
CCL_NAMESPACE_END
|
||
|
|
||
|
#endif /* __OSL_BSDF_H__ */
|
||
|
|