blender/intern/moto/include/MT_Matrix3x3.h

266 lines
9.2 KiB
C
Raw Normal View History

2002-10-12 11:37:38 +00:00
/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
2002-10-12 11:37:38 +00:00
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
2002-10-12 11:37:38 +00:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
2002-10-12 11:37:38 +00:00
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
2002-10-12 11:37:38 +00:00
*/
/*
* Copyright (c) 2000 Gino van den Bergen <gino@acm.org>
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Gino van den Bergen makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifndef MT_MATRIX3X3_H
#define MT_MATRIX3X3_H
#include <MT_assert.h>
#include "MT_Vector3.h"
#include "MT_Quaternion.h"
class MT_Matrix3x3 {
public:
MT_Matrix3x3() {}
MT_Matrix3x3(const float *m) { setValue(m); }
MT_Matrix3x3(const double *m) { setValue(m); }
MT_Matrix3x3(const MT_Quaternion& q) { setRotation(q); }
MT_Matrix3x3(const MT_Quaternion& q, const MT_Vector3& s) {
setRotation(q);
scale(s[0], s[1], s[2]);
}
MT_Matrix3x3(const MT_Vector3& euler) { setEuler(euler); }
MT_Matrix3x3(const MT_Vector3& euler, const MT_Vector3& s) {
setEuler(euler);
scale(s[0], s[1], s[2]);
}
MT_Matrix3x3(MT_Scalar xx, MT_Scalar xy, MT_Scalar xz,
MT_Scalar yx, MT_Scalar yy, MT_Scalar yz,
MT_Scalar zx, MT_Scalar zy, MT_Scalar zz) {
setValue(xx, xy, xz,
yx, yy, yz,
zx, zy, zz);
}
MT_Vector3& operator[](int i) { return m_el[i]; }
const MT_Vector3& operator[](int i) const { return m_el[i]; }
MT_Vector3 getColumn(int i) const {
return MT_Vector3(m_el[0][i], m_el[1][i], m_el[2][i]);
}
void setColumn(int i, const MT_Vector3& v) {
m_el[0][i] = v[0];
m_el[1][i] = v[1];
m_el[2][i] = v[2];
}
2002-10-12 11:37:38 +00:00
void setValue(const float *m) {
m_el[0][0] = *m++; m_el[1][0] = *m++; m_el[2][0] = *m++; m++;
m_el[0][1] = *m++; m_el[1][1] = *m++; m_el[2][1] = *m++; m++;
m_el[0][2] = *m++; m_el[1][2] = *m++; m_el[2][2] = *m;
}
void setValue(const double *m) {
m_el[0][0] = *m++; m_el[1][0] = *m++; m_el[2][0] = *m++; m++;
m_el[0][1] = *m++; m_el[1][1] = *m++; m_el[2][1] = *m++; m++;
m_el[0][2] = *m++; m_el[1][2] = *m++; m_el[2][2] = *m;
}
void setValue3x3(const float *m) {
m_el[0][0] = *m++; m_el[1][0] = *m++; m_el[2][0] = *m++;
m_el[0][1] = *m++; m_el[1][1] = *m++; m_el[2][1] = *m++;
m_el[0][2] = *m++; m_el[1][2] = *m++; m_el[2][2] = *m;
}
void setValue3x3(const double *m) {
m_el[0][0] = *m++; m_el[1][0] = *m++; m_el[2][0] = *m++;
m_el[0][1] = *m++; m_el[1][1] = *m++; m_el[2][1] = *m++;
m_el[0][2] = *m++; m_el[1][2] = *m++; m_el[2][2] = *m;
}
2002-10-12 11:37:38 +00:00
void setValue(MT_Scalar xx, MT_Scalar xy, MT_Scalar xz,
MT_Scalar yx, MT_Scalar yy, MT_Scalar yz,
MT_Scalar zx, MT_Scalar zy, MT_Scalar zz) {
m_el[0][0] = xx; m_el[0][1] = xy; m_el[0][2] = xz;
m_el[1][0] = yx; m_el[1][1] = yy; m_el[1][2] = yz;
m_el[2][0] = zx; m_el[2][1] = zy; m_el[2][2] = zz;
}
void setRotation(const MT_Quaternion& q) {
MT_Scalar d = q.length2();
MT_assert(!MT_fuzzyZero2(d));
MT_Scalar s = MT_Scalar(2.0) / d;
MT_Scalar xs = q[0] * s, ys = q[1] * s, zs = q[2] * s;
MT_Scalar wx = q[3] * xs, wy = q[3] * ys, wz = q[3] * zs;
MT_Scalar xx = q[0] * xs, xy = q[0] * ys, xz = q[0] * zs;
MT_Scalar yy = q[1] * ys, yz = q[1] * zs, zz = q[2] * zs;
setValue(MT_Scalar(1.0) - (yy + zz), xy - wz , xz + wy,
xy + wz , MT_Scalar(1.0) - (xx + zz), yz - wx,
xz - wy , yz + wx, MT_Scalar(1.0) - (xx + yy));
}
/**
* setEuler
* @param euler a const reference to a MT_Vector3 of euler angles
* These angles are used to produce a rotation matrix. The euler
* angles are applied in ZYX order. I.e a vector is first rotated
* about X then Y and then Z
**/
void setEuler(const MT_Vector3& euler) {
MT_Scalar ci = cos(euler[0]);
MT_Scalar cj = cos(euler[1]);
MT_Scalar ch = cos(euler[2]);
MT_Scalar si = sin(euler[0]);
MT_Scalar sj = sin(euler[1]);
MT_Scalar sh = sin(euler[2]);
MT_Scalar cc = ci * ch;
MT_Scalar cs = ci * sh;
MT_Scalar sc = si * ch;
MT_Scalar ss = si * sh;
setValue(cj * ch, sj * sc - cs, sj * cc + ss,
cj * sh, sj * ss + cc, sj * cs - sc,
-sj, cj * si, cj * ci);
}
Delta Loc/Rot/Scale Ipo curve are now supporting in the BGE with the following limitations: 1. All Ipo channels are now independent. In Blender 2.45, all 3 Loc Ipo channels were automatically set together. For example, having just a LocX Ipo channel was sufficient to fix the X, Y and Z coordinates, with the Y and Z value taken from the object original Y and Z location in Blender. The same was true for the 3 Rot and the 3 Scale Ipo channels: the missing channels were assumed to have constant value taken from the object original orientation/scale in Blender. With this patch, all Ipo channels are now independent. THIS WILL CREATE BACKWARD COMPATIBILITY PROBLEM if you omit to define the 3 channels of a same type together in your Blend file: the undefined Loc, Rot, Scale coordinates of the object will be influenced by the parent/spawner Loc/Rot/Scale in case the object is a child or dynamically created. 2. Delta Loc, Rot, Scale are now supported with the following limitations: - The delta Loc/Rot Ipo modify the object global (NOT local) location/orientation - The delta Scale change the object local scale - The delta Ipo curves are relative to the object starting Loc/Rot/Scale when the Ipo was first activated; after that, the delta Ipo becomes global. This means that the object will return to this initial Loc/Rot/Scale when you later restart the Ipo curve, even if you had changed the object Loc/Rot/Scale in the meantime. Of course this applies only to the specific Loc/Rot/Scale coordinate that are defined in the Ipo channels as the channels are now independent. 3. When the objects are converted from Blender to the BGE, the delta Loc/Rot/Scale that might result from initial non-zero values in delta Ipo Curves will be ignored. However, as soon as the delta Ipo curve is activated, the non-zero values will be taken into account and the object will jump to the same Loc/Rot/Scale situation as in Blender. Note that delta Ipo curves with initial non-zero values is bad practice; logically, a delta Ipo curver should always start from 0. 4. If you define both a global and delta channel of the same type (LocX and DLocX), the result will be a global channel equivalent to the sum of the two channels (LocX+DLocX).
2008-03-12 21:33:24 +00:00
void getEuler(MT_Scalar& yaw, MT_Scalar& pitch, MT_Scalar& roll) const
{
if (m_el[2][0] != -1.0 && m_el[2][0] != 1.0) {
pitch = MT_Scalar(-asin(m_el[2][0]));
yaw = MT_Scalar(atan2(m_el[2][1] / cos(pitch), m_el[2][2] / cos(pitch)));
roll = MT_Scalar(atan2(m_el[1][0] / cos(pitch), m_el[0][0] / cos(pitch)));
}
else {
roll = MT_Scalar(0);
if (m_el[2][0] == -1.0) {
pitch = MT_PI / 2.0;
yaw = MT_Scalar(atan2(m_el[0][1], m_el[0][2]));
}
else {
pitch = - MT_PI / 2.0;
yaw = MT_Scalar(atan2(m_el[0][1], m_el[0][2]));
}
}
}
2002-10-12 11:37:38 +00:00
void scale(MT_Scalar x, MT_Scalar y, MT_Scalar z) {
m_el[0][0] *= x; m_el[0][1] *= y; m_el[0][2] *= z;
m_el[1][0] *= x; m_el[1][1] *= y; m_el[1][2] *= z;
m_el[2][0] *= x; m_el[2][1] *= y; m_el[2][2] *= z;
}
MT_Matrix3x3 scaled(MT_Scalar x, MT_Scalar y, MT_Scalar z) const {
return MT_Matrix3x3(m_el[0][0] * x, m_el[0][1] * y, m_el[0][2] * z,
m_el[1][0] * x, m_el[1][1] * y, m_el[1][2] * z,
m_el[2][0] * x, m_el[2][1] * y, m_el[2][2] * z);
}
void setIdentity() {
setValue(MT_Scalar(1.0), MT_Scalar(0.0), MT_Scalar(0.0),
MT_Scalar(0.0), MT_Scalar(1.0), MT_Scalar(0.0),
MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(1.0));
}
void getValue(float *m) const {
*m++ = (float) m_el[0][0]; *m++ = (float) m_el[1][0]; *m++ = (float) m_el[2][0]; *m++ = (float) 0.0;
*m++ = (float) m_el[0][1]; *m++ = (float) m_el[1][1]; *m++ = (float) m_el[2][1]; *m++ = (float) 0.0;
*m++ = (float) m_el[0][2]; *m++ = (float) m_el[1][2]; *m++ = (float) m_el[2][2]; *m = (float) 0.0;
2002-10-12 11:37:38 +00:00
}
void getValue(double *m) const {
*m++ = m_el[0][0]; *m++ = m_el[1][0]; *m++ = m_el[2][0]; *m++ = 0.0;
*m++ = m_el[0][1]; *m++ = m_el[1][1]; *m++ = m_el[2][1]; *m++ = 0.0;
*m++ = m_el[0][2]; *m++ = m_el[1][2]; *m++ = m_el[2][2]; *m = 0.0;
}
void getValue3x3(float *m) const {
*m++ = (float) m_el[0][0]; *m++ = (float) m_el[1][0]; *m++ = (float) m_el[2][0];
*m++ = (float) m_el[0][1]; *m++ = (float) m_el[1][1]; *m++ = (float) m_el[2][1];
*m++ = (float) m_el[0][2]; *m++ = (float) m_el[1][2]; *m++ = (float) m_el[2][2];
}
void getValue3x3(double *m) const {
*m++ = m_el[0][0]; *m++ = m_el[1][0]; *m++ = m_el[2][0];
*m++ = m_el[0][1]; *m++ = m_el[1][1]; *m++ = m_el[2][1];
*m++ = m_el[0][2]; *m++ = m_el[1][2]; *m++ = m_el[2][2];
}
2002-10-12 11:37:38 +00:00
MT_Quaternion getRotation() const;
MT_Matrix3x3& operator*=(const MT_Matrix3x3& m);
MT_Scalar tdot(int c, const MT_Vector3& v) const {
return m_el[0][c] * v[0] + m_el[1][c] * v[1] + m_el[2][c] * v[2];
}
MT_Scalar cofac(int r1, int c1, int r2, int c2) const {
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
}
MT_Scalar determinant() const;
MT_Matrix3x3 adjoint() const;
MT_Matrix3x3 absolute() const;
MT_Matrix3x3 transposed() const;
void transpose();
MT_Matrix3x3 inverse() const;
void invert();
protected:
MT_Vector3 m_el[3];
};
MT_Vector3 operator*(const MT_Matrix3x3& m, const MT_Vector3& v);
MT_Vector3 operator*(const MT_Vector3& v, const MT_Matrix3x3& m);
MT_Matrix3x3 operator*(const MT_Matrix3x3& m1, const MT_Matrix3x3& m2);
MT_Matrix3x3 MT_multTransposeLeft(const MT_Matrix3x3& m1, const MT_Matrix3x3& m2);
MT_Matrix3x3 MT_multTransposeRight(const MT_Matrix3x3& m1, const MT_Matrix3x3& m2);
inline MT_OStream& operator<<(MT_OStream& os, const MT_Matrix3x3& m) {
return os << m[0] << GEN_endl << m[1] << GEN_endl << m[2] << GEN_endl;
}
#ifdef GEN_INLINED
#include "MT_Matrix3x3.inl"
#endif
#endif