blender/source/gameengine/Ketsji/KX_BulletPhysicsController.h

88 lines
2.8 KiB
C
Raw Normal View History

2005-07-16 21:47:54 +00:00
#ifndef KX_BULLET2PHYSICS_CONTROLLER
#define KX_BULLET2PHYSICS_CONTROLLER
#include "KX_IPhysicsController.h"
#include "CcdPhysicsController.h"
class KX_BulletPhysicsController : public KX_IPhysicsController ,public CcdPhysicsController
{
private:
int m_savedCollisionFlags;
int m_savedActivationState;
short int m_savedCollisionFilterGroup;
short int m_savedCollisionFilterMask;
MT_Scalar m_savedMass;
bool m_savedDyna;
bool m_suspended;
BGE patch: dynamically update the coumpound parent shape when parenting to a compound object. This patch modifies the way the setParent actuator and KX_GameObject::setParent() function works when parenting to a compound object: the collision shape of the object being parented is dynamically added to the coumpound shape. Similarly, unparenting an object from a compound object will cause the child collision shape to be dynamically removed from the parent shape provided that is was previously added with setParent. Note: * This also works if the object is parented to a child of a compound object: the collision shape is added to the compound shape of the top parent. * The collision shape is added with the transformation (position, scale and orientation) it had at the time of the parenting. * The child shape is rigidly attached to the compound shape, the transformation is not affected by any further change in position/scale/orientation of the child object. * While the child shape is added to the compound shape, the child object is removed from the dynamic world to avoid superposition of shapes (one for the object itself and one for the compound child shape). This means that collision sensors on the child object are disabled while the child object is parent to a compound object. * There is no difference when setParent is used on a non-compound object: the child object is automatically changed to a static ghost object to avoid bad interaction with the parent shape; collision sensors on the child object continue to be active while the object is parented. * The child shape dynamically added to a compound shape modifies the inertia of the compound object but not the mass. It participates to collision detection as any other "static" child shape.
2009-01-13 22:59:18 +00:00
btCollisionShape* m_bulletChildShape;
2005-07-16 21:47:54 +00:00
public:
BGE: new sensor object to generalize Near and Radar sensor, static-static collision capbility. A new type of "Sensor" physics object is available in the GE for advanced collision management. It's called Sensor for its similarities with the physics objects that underlie the Near and Radar sensors. Like the Near and Radar object it is: - static and ghost - invisible by default - always active to ensure correct collision detection - capable of detecting both static and dynamic objects - ignoring collision with their parent - capable of broadphase filtering based on: * Actor option: the collisioning object must have the Actor flag set to be detected * property/material: as specified in the collision sensors attached to it Broadphase filtering is important for performance reason: the collision points will be computed only for the objects that pass the broahphase filter. - automatically removed from the simulation when no collision sensor is active on it Unlike the Near and Radar object it can: - take any shape, including triangle mesh - be made visible for debugging (just use the Visible actuator) - have multiple collision sensors using it Other than that, the sensor objects are ordinary objects. You can move them freely or parent them. When parented to a dynamic object, they can provide advanced collision control to this object. The type of collision capability depends on the shape: - box, sphere, cylinder, cone, convex hull provide volume detection. - triangle mesh provides surface detection but you can give some volume to the suface by increasing the margin in the Advanced Settings panel. The margin applies on both sides of the surface. Performance tip: - Sensor objects perform better than Near and Radar: they do less synchronizations because of the Scenegraph optimizations and they can have multiple collision sensors on them (with different property filtering for example). - Always prefer simple shape (box, sphere) to complex shape whenever possible. - Always use broadphase filtering (avoid collision sensor with empty propery/material) - Use collision sensor only when you need them. When no collision sensor is active on the sensor object, it is removed from the simulation and consume no CPU. Known limitations: - When running Blender in debug mode, you will see one warning line of the console: "warning btCollisionDispatcher::needsCollision: static-static collision!" In release mode this message is not printed. - Collision margin has no effect on sphere, cone and cylinder shape. Other performance improvements: - Remove unnecessary interpolation for Near and Radar objects and by extension sensor objects. - Use direct matrix copy instead of quaternion to synchronize orientation. Other bug fix: - Fix Near/Radar position error on newly activated objects. This was causing several detection problems in YoFrankie - Fix margin not passed correctly to gImpact shape. - Disable force/velocity actions on static objects
2009-05-17 12:51:51 +00:00
KX_BulletPhysicsController (const CcdConstructionInfo& ci, bool dyna, bool sensor, bool compound);
2005-07-16 21:47:54 +00:00
virtual ~KX_BulletPhysicsController ();
///////////////////////////////////
// KX_IPhysicsController interface
////////////////////////////////////
virtual void applyImpulse(const MT_Point3& attach, const MT_Vector3& impulse);
virtual void SetObject (SG_IObject* object);
virtual void setMargin (float collisionMargin);
2005-07-16 21:47:54 +00:00
virtual void RelativeTranslate(const MT_Vector3& dloc,bool local);
virtual void RelativeRotate(const MT_Matrix3x3& drot,bool local);
virtual void ApplyTorque(const MT_Vector3& torque,bool local);
virtual void ApplyForce(const MT_Vector3& force,bool local);
virtual MT_Vector3 GetLinearVelocity();
virtual MT_Vector3 GetAngularVelocity();
2005-07-16 21:47:54 +00:00
virtual MT_Vector3 GetVelocity(const MT_Point3& pos);
virtual void SetAngularVelocity(const MT_Vector3& ang_vel,bool local);
virtual void SetLinearVelocity(const MT_Vector3& lin_vel,bool local);
virtual void getOrientation(MT_Quaternion& orn);
virtual void setOrientation(const MT_Matrix3x3& orn);
2005-07-16 21:47:54 +00:00
virtual void setPosition(const MT_Point3& pos);
virtual void setScaling(const MT_Vector3& scaling);
BGE: new sensor object to generalize Near and Radar sensor, static-static collision capbility. A new type of "Sensor" physics object is available in the GE for advanced collision management. It's called Sensor for its similarities with the physics objects that underlie the Near and Radar sensors. Like the Near and Radar object it is: - static and ghost - invisible by default - always active to ensure correct collision detection - capable of detecting both static and dynamic objects - ignoring collision with their parent - capable of broadphase filtering based on: * Actor option: the collisioning object must have the Actor flag set to be detected * property/material: as specified in the collision sensors attached to it Broadphase filtering is important for performance reason: the collision points will be computed only for the objects that pass the broahphase filter. - automatically removed from the simulation when no collision sensor is active on it Unlike the Near and Radar object it can: - take any shape, including triangle mesh - be made visible for debugging (just use the Visible actuator) - have multiple collision sensors using it Other than that, the sensor objects are ordinary objects. You can move them freely or parent them. When parented to a dynamic object, they can provide advanced collision control to this object. The type of collision capability depends on the shape: - box, sphere, cylinder, cone, convex hull provide volume detection. - triangle mesh provides surface detection but you can give some volume to the suface by increasing the margin in the Advanced Settings panel. The margin applies on both sides of the surface. Performance tip: - Sensor objects perform better than Near and Radar: they do less synchronizations because of the Scenegraph optimizations and they can have multiple collision sensors on them (with different property filtering for example). - Always prefer simple shape (box, sphere) to complex shape whenever possible. - Always use broadphase filtering (avoid collision sensor with empty propery/material) - Use collision sensor only when you need them. When no collision sensor is active on the sensor object, it is removed from the simulation and consume no CPU. Known limitations: - When running Blender in debug mode, you will see one warning line of the console: "warning btCollisionDispatcher::needsCollision: static-static collision!" In release mode this message is not printed. - Collision margin has no effect on sphere, cone and cylinder shape. Other performance improvements: - Remove unnecessary interpolation for Near and Radar objects and by extension sensor objects. - Use direct matrix copy instead of quaternion to synchronize orientation. Other bug fix: - Fix Near/Radar position error on newly activated objects. This was causing several detection problems in YoFrankie - Fix margin not passed correctly to gImpact shape. - Disable force/velocity actions on static objects
2009-05-17 12:51:51 +00:00
virtual void SetTransform();
2005-07-16 21:47:54 +00:00
virtual MT_Scalar GetMass();
virtual void SetMass(MT_Scalar newmass);
virtual MT_Vector3 GetLocalInertia();
2005-07-16 21:47:54 +00:00
virtual MT_Vector3 getReactionForce();
virtual void setRigidBody(bool rigid);
BGE patch: dynamically update the coumpound parent shape when parenting to a compound object. This patch modifies the way the setParent actuator and KX_GameObject::setParent() function works when parenting to a compound object: the collision shape of the object being parented is dynamically added to the coumpound shape. Similarly, unparenting an object from a compound object will cause the child collision shape to be dynamically removed from the parent shape provided that is was previously added with setParent. Note: * This also works if the object is parented to a child of a compound object: the collision shape is added to the compound shape of the top parent. * The collision shape is added with the transformation (position, scale and orientation) it had at the time of the parenting. * The child shape is rigidly attached to the compound shape, the transformation is not affected by any further change in position/scale/orientation of the child object. * While the child shape is added to the compound shape, the child object is removed from the dynamic world to avoid superposition of shapes (one for the object itself and one for the compound child shape). This means that collision sensors on the child object are disabled while the child object is parent to a compound object. * There is no difference when setParent is used on a non-compound object: the child object is automatically changed to a static ghost object to avoid bad interaction with the parent shape; collision sensors on the child object continue to be active while the object is parented. * The child shape dynamically added to a compound shape modifies the inertia of the compound object but not the mass. It participates to collision detection as any other "static" child shape.
2009-01-13 22:59:18 +00:00
virtual void AddCompoundChild(KX_IPhysicsController* child);
virtual void RemoveCompoundChild(KX_IPhysicsController* child);
2005-07-16 21:47:54 +00:00
virtual void resolveCombinedVelocities(float linvelX,float linvelY,float linvelZ,float angVelX,float angVelY,float angVelZ);
virtual void SuspendDynamics(bool ghost);
2005-07-16 21:47:54 +00:00
virtual void RestoreDynamics();
virtual SG_Controller* GetReplica(class SG_Node* destnode);
virtual MT_Scalar GetRadius();
virtual float GetLinVelocityMin();
virtual void SetLinVelocityMin(float val);
virtual float GetLinVelocityMax();
virtual void SetLinVelocityMax(float val);
2005-07-16 21:47:54 +00:00
virtual void SetSumoTransform(bool nondynaonly);
// todo: remove next line !
virtual void SetSimulatedTime(double time);
// call from scene graph to update
virtual bool Update(double time);
void* GetUserData() { return m_userdata;}
void
SetOption(
int option,
int value
){
// intentionally empty
};
};
#endif //KX_BULLET2PHYSICS_CONTROLLER