blender/doc/python_api/examples/bge.texture.2.py

238 lines
7.4 KiB
Python
Raw Normal View History

BGE: DeckLink card support for video capture and streaming. You can capture and stream video in the BGE using the DeckLink video cards from Black Magic Design. You need a card and Desktop Video software version 10.4 or above to use these features in the BGE. Many thanks to Nuno Estanquiero who tested the patch extensively on a variety of Decklink products, it wouldn't have been possible without his help. You can find a brief summary of the decklink features here: https://wiki.blender.org/index.php/Dev:Source/GameEngine/Decklink The full API details and samples are in the Python API documentation. bge.texture.VideoDeckLink(format, capture=0): Use this object to capture a video stream. the format argument describes the video and pixel formats and the capture argument the card number. This object can be used as a source for bge.texture.Texture so that the frame is sent to the GPU, or by itself using the new refresh method to get the video frame in a buffer. The frames are usually not in RGB but in YUV format (8bit or 10bit); they require a shader to extract the RGB components in the GPU. Details and sample shaders in the documentation. 3D video capture is supported: the frames are double height with left and right eyes in top-bottom order. The 'eye' uniform (see setUniformEyef) can be used to sample the 3D frame when the BGE is also in stereo mode. This allows to composite a 3D video stream with a 3D scene and render it in stereo. In Windows, and if you have a nVidia Quadro GPU, you can benefit of an additional performance boost by using 'GPUDirect': a method to send a video frame to the GPU without going through the OGL driver. The 'pinned memory' OGL extension is also supported (only on high-end AMD GPU) with the same effect. bge.texture.DeckLink(cardIdx=0, format=""): Use this object to send video frame to a DeckLink card. Only the immediate mode is supported, the scheduled mode is not implemented. This object is similar to bge.texture.Texture: you need to attach a image source and call refresh() to compute and send the frame to the card. This object is best suited for video keying: a video stream (not captured) flows through the card and the frame you send to the card are displayed above it (the card does the compositing automatically based on the alpha channel). At the time of this commit, 3D video keying is supported in the BGE but not in the DeckLink card due to a color space issue.
2016-06-10 08:09:26 +00:00
"""
Video Capture with DeckLink
+++++++++++++++++++++++++++
Video frames captured with DeckLink cards have pixel formats that are generally not directly
usable by OpenGL, they must be processed by a shader. The three shaders presented here should
cover all common video capture cases.
This file reflects the current video transfer method implemented in the Decklink module:
whenever possible the video images are transferred as float texture because this is more
compatible with GPUs. Of course, only the pixel formats that have a correspondant GL format
can be transferred as float. Look for fg_shaders in this file for an exhaustive list.
Other pixel formats will be transferred as 32 bits integer red-channel texture but this
won't work with certain GPU (Intel GMA); the corresponding shaders are not shown here.
However, it should not be necessary to use any of them as the list below covers all practical
cases of video capture with all types of Decklink product.
In other words, only use one of the pixel format below and you will be fine. Note that depending
on the video stream, only certain pixel formats will be allowed (others will throw an exception).
For example, to capture a PAL video stream, you must use one of the YUV formats.
To find which pixel format is suitable for a particular video stream, use the 'Media Express'
utility that comes with the Decklink software : if you see the video in the 'Log and Capture'
Window, you have selected the right pixel format and you can use the same in Blender.
Notes: * these shaders only decode the RGB channel and set the alpha channel to a fixed
value (look for color.a = ). It's up to you to add postprocessing to the color.
* these shaders are compatible with 2D and 3D video stream
"""
import bge
from bge import logic
from bge import texture as vt
# The default vertex shader, because we need one
#
VertexShader = """
#version 130
void main()
{
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
gl_TexCoord[0] = gl_MultiTexCoord0;
}
"""
# For use with RGB video stream: the pixel is directly usable
#
FragmentShader_R10l = """
#version 130
uniform sampler2D tex;
// stereo = 1.0 if 2D image, =0.5 if 3D (left eye below, right eye above)
uniform float stereo;
// eye = 0.0 for the left eye, 0.5 for the right eye
uniform float eye;
void main(void)
{
vec4 color;
float tx, ty;
tx = gl_TexCoord[0].x;
ty = eye+gl_TexCoord[0].y*stereo;
color = texture(tex, vec2(tx,ty));
color.a = 0.7;
gl_FragColor = color;
}
"""
# For use with YUV video stream
#
FragmentShader_2vuy = """
#version 130
uniform sampler2D tex;
// stereo = 1.0 if 2D image, =0.5 if 3D (left eye below, right eye above)
uniform float stereo;
// eye = 0.0 for the left eye, 0.5 for the right eye
uniform float eye;
void main(void)
{
vec4 color;
float tx, ty, width, Y, Cb, Cr;
int px;
tx = gl_TexCoord[0].x;
ty = eye+gl_TexCoord[0].y*stereo;
width = float(textureSize(tex, 0).x);
color = texture(tex, vec2(tx, ty));
px = int(floor(fract(tx*width)*2.0));
switch (px) {
case 0:
Y = color.g;
break;
case 1:
Y = color.a;
break;
}
Y = (Y - 0.0625) * 1.168949772;
Cb = (color.b - 0.0625) * 1.142857143 - 0.5;
Cr = (color.r - 0.0625) * 1.142857143 - 0.5;
color.r = Y + 1.5748 * Cr;
color.g = Y - 0.1873 * Cb - 0.4681 * Cr;
color.b = Y + 1.8556 * Cb;
color.a = 0.7;
gl_FragColor = color;
}
"""
# For use with high resolution YUV
#
FragmentShader_v210 = """
#version 130
uniform sampler2D tex;
// stereo = 1.0 if 2D image, =0.5 if 3D (left eye below, right eye above)
uniform float stereo;
// eye = 0.0 for the left eye, 0.5 for the right eye
uniform float eye;
void main(void)
{
vec4 color, color1, color2, color3;
int px;
float tx, ty, width, sx, dx, bx, Y, Cb, Cr;
tx = gl_TexCoord[0].x;
ty = eye+gl_TexCoord[0].y*stereo;
width = float(textureSize(tex, 0).x);
// to sample macro pixels (6 pixels in 4 words)
sx = tx*width*0.25+0.01;
// index of display pixel in the macro pixel 0..5
px = int(floor(fract(sx)*6.0));
// increment as we sample the macro pixel
dx = 1.0/width;
// base x coord of macro pixel
bx = (floor(sx)+0.01)*dx*4.0;
color = texture(tex, vec2(bx, ty));
color1 = texture(tex, vec2(bx+dx, ty));
color2 = texture(tex, vec2(bx+dx*2.0, ty));
color3 = texture(tex, vec2(bx+dx*3.0, ty));
switch (px) {
case 0:
case 1:
Cb = color.b;
Cr = color.r;
break;
case 2:
case 3:
Cb = color1.g;
Cr = color2.b;
break;
default:
Cb = color2.r;
Cr = color3.g;
break;
}
switch (px) {
case 0:
Y = color.g;
break;
case 1:
Y = color1.b;
break;
case 2:
Y = color1.r;
break;
case 3:
Y = color2.g;
break;
case 4:
Y = color3.b;
break;
default:
Y = color3.r;
break;
}
Y = (Y - 0.0625) * 1.168949772;
Cb = (Cb - 0.0625) * 1.142857143 - 0.5;
Cr = (Cr - 0.0625) * 1.142857143 - 0.5;
color.r = Y + 1.5748 * Cr;
color.g = Y - 0.1873 * Cb - 0.4681 * Cr;
color.b = Y + 1.8556 * Cb;
color.a = 0.7;
gl_FragColor = color;
}
"""
# The exhausitve list of pixel formats that are transferred as float texture
# Only use those for greater efficiency and compatiblity.
#
fg_shaders = {
'2vuy' :FragmentShader_2vuy,
'8BitYUV' :FragmentShader_2vuy,
'v210' :FragmentShader_v210,
'10BitYUV' :FragmentShader_v210,
'8BitBGRA' :FragmentShader_R10l,
'BGRA' :FragmentShader_R10l,
'8BitARGB' :FragmentShader_R10l,
'10BitRGBXLE':FragmentShader_R10l,
'R10l' :FragmentShader_R10l
}
#
# Helper function to attach a pixel shader to the material that receives the video frame.
#
def config_video(obj, format, pixel, is3D=False, mat=0, card=0):
if pixel not in fg_shaders:
raise('Unsuported shader')
shader = obj.meshes[0].materials[mat].getShader()
if shader is not None and not shader.isValid():
shader.setSource(VertexShader, fg_shaders[pixel], True)
shader.setSampler('tex', 0)
shader.setUniformEyef("eye")
shader.setUniform1f("stereo", 0.5 if is3D else 1.0)
tex = vt.Texture(obj, mat)
tex.source = vt.VideoDeckLink(format + "/" + pixel + ("/3D" if is3D else ""), card)
print("frame rate: ", tex.source.framerate)
tex.source.play()
obj["video"] = tex
#
# Attach this function to an object that has a material with texture
# and call it once to initialize the object
#
def init(cont):
# config_video(cont.owner, 'HD720p5994', '8BitBGRA')
# config_video(cont.owner, 'HD720p5994', '8BitYUV')
# config_video(cont.owner, 'pal ', '10BitYUV')
config_video(cont.owner, 'pal ', '8BitYUV')
#
# To be called on every frame
#
def play(cont):
obj = cont.owner
video = obj.get("video")
if video is not None:
video.refresh(True)