blender/extern/bullet/BulletDynamics/ConstraintSolver/SorLcp.cpp

821 lines
22 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2005 Erwin Coumans http://www.erwincoumans.com
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "SorLcp.h"
#ifdef USE_SOR_SOLVER
// SOR LCP taken from ode quickstep,
// todo: write own successive overrelaxation gauss-seidel, or jacobi iterative solver
#include "SimdScalar.h"
#include "Dynamics/RigidBody.h"
#include <math.h>
#include <float.h>//FLT_MAX
#ifdef WIN32
#include <memory.h>
#endif
#include <string.h>
#include <stdio.h>
#ifdef WIN32
#include <malloc.h>
#else
#include <alloca.h>
#endif
#include "Dynamics/BU_Joint.h"
#include "ContactSolverInfo.h"
////////////////////////////////////////////////////////////////////
//math stuff
typedef SimdScalar dVector4[4];
typedef SimdScalar dMatrix3[4*3];
#define dInfinity FLT_MAX
#define dRecip(x) ((float)(1.0f/(x))) /* reciprocal */
#define dMULTIPLY0_331NEW(A,op,B,C) \
{\
float tmp[3];\
tmp[0] = C.getX();\
tmp[1] = C.getY();\
tmp[2] = C.getZ();\
dMULTIPLYOP0_331(A,op,B,tmp);\
}
#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
#define dMULTIPLYOP0_331(A,op,B,C) \
(A)[0] op dDOT1((B),(C)); \
(A)[1] op dDOT1((B+4),(C)); \
(A)[2] op dDOT1((B+8),(C));
#define dAASSERT ASSERT
#define dIASSERT ASSERT
#define REAL float
#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
SimdScalar dDOT1 (const SimdScalar *a, const SimdScalar *b) { return dDOTpq(a,b,1,1); }
#define dDOT14(a,b) dDOTpq(a,b,1,4)
#define dCROSS(a,op,b,c) \
(a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
(a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
(a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]);
#define dMULTIPLYOP2_333(A,op,B,C) \
(A)[0] op dDOT1((B),(C)); \
(A)[1] op dDOT1((B),(C+4)); \
(A)[2] op dDOT1((B),(C+8)); \
(A)[4] op dDOT1((B+4),(C)); \
(A)[5] op dDOT1((B+4),(C+4)); \
(A)[6] op dDOT1((B+4),(C+8)); \
(A)[8] op dDOT1((B+8),(C)); \
(A)[9] op dDOT1((B+8),(C+4)); \
(A)[10] op dDOT1((B+8),(C+8));
#define dMULTIPLYOP0_333(A,op,B,C) \
(A)[0] op dDOT14((B),(C)); \
(A)[1] op dDOT14((B),(C+1)); \
(A)[2] op dDOT14((B),(C+2)); \
(A)[4] op dDOT14((B+4),(C)); \
(A)[5] op dDOT14((B+4),(C+1)); \
(A)[6] op dDOT14((B+4),(C+2)); \
(A)[8] op dDOT14((B+8),(C)); \
(A)[9] op dDOT14((B+8),(C+1)); \
(A)[10] op dDOT14((B+8),(C+2));
#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)
#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
////////////////////////////////////////////////////////////////////
#define EFFICIENT_ALIGNMENT 16
#define dEFFICIENT_SIZE(x) ((((x)-1)|(EFFICIENT_ALIGNMENT-1))+1)
/* alloca aligned to the EFFICIENT_ALIGNMENT. note that this can waste
* up to 15 bytes per allocation, depending on what alloca() returns.
*/
#define dALLOCA16(n) \
((char*)dEFFICIENT_SIZE(((size_t)(alloca((n)+(EFFICIENT_ALIGNMENT-1))))))
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
#ifdef DEBUG
#define ANSI_FTOL 1
extern "C" {
__declspec(naked) void _ftol2() {
__asm {
#if ANSI_FTOL
fnstcw WORD PTR [esp-2]
mov ax, WORD PTR [esp-2]
OR AX, 0C00h
mov WORD PTR [esp-4], ax
fldcw WORD PTR [esp-4]
fistp QWORD PTR [esp-12]
fldcw WORD PTR [esp-2]
mov eax, DWORD PTR [esp-12]
mov edx, DWORD PTR [esp-8]
#else
fistp DWORD PTR [esp-12]
mov eax, DWORD PTR [esp-12]
mov ecx, DWORD PTR [esp-8]
#endif
ret
}
}
}
#endif //DEBUG
#define ALLOCA dALLOCA16
typedef const SimdScalar *dRealPtr;
typedef SimdScalar *dRealMutablePtr;
#define dRealArray(name,n) SimdScalar name[n];
#define dRealAllocaArray(name,n) SimdScalar *name = (SimdScalar*) ALLOCA ((n)*sizeof(SimdScalar));
void dSetZero1 (SimdScalar *a, int n)
{
dAASSERT (a && n >= 0);
while (n > 0) {
*(a++) = 0;
n--;
}
}
void dSetValue1 (SimdScalar *a, int n, SimdScalar value)
{
dAASSERT (a && n >= 0);
while (n > 0) {
*(a++) = value;
n--;
}
}
//***************************************************************************
// configuration
// for the SOR and CG methods:
// uncomment the following line to use warm starting. this definitely
// help for motor-driven joints. unfortunately it appears to hurt
// with high-friction contacts using the SOR method. use with care
//#define WARM_STARTING 1
// for the SOR method:
// uncomment the following line to randomly reorder constraint rows
// during the solution. depending on the situation, this can help a lot
// or hardly at all, but it doesn't seem to hurt.
//#define RANDOMLY_REORDER_CONSTRAINTS 1
//***************************************************************************
// various common computations involving the matrix J
// compute iMJ = inv(M)*J'
static void compute_invM_JT (int m, dRealMutablePtr J, dRealMutablePtr iMJ, int *jb,
RigidBody * const *body, dRealPtr invI)
{
int i,j;
dRealMutablePtr iMJ_ptr = iMJ;
dRealMutablePtr J_ptr = J;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
int b2 = jb[i*2+1];
SimdScalar k = body[b1]->getInvMass();
for (j=0; j<3; j++) iMJ_ptr[j] = k*J_ptr[j];
dMULTIPLY0_331 (iMJ_ptr + 3, invI + 12*b1, J_ptr + 3);
if (b2 >= 0) {
k = body[b2]->getInvMass();
for (j=0; j<3; j++) iMJ_ptr[j+6] = k*J_ptr[j+6];
dMULTIPLY0_331 (iMJ_ptr + 9, invI + 12*b2, J_ptr + 9);
}
J_ptr += 12;
iMJ_ptr += 12;
}
}
static void multiply_invM_JTSpecial (int m, int nb, dRealMutablePtr iMJ, int *jb,
dRealMutablePtr in, dRealMutablePtr out,int onlyBody1,int onlyBody2)
{
int i,j;
dRealMutablePtr out_ptr1 = out + onlyBody1*6;
for (j=0; j<6; j++)
out_ptr1[j] = 0;
if (onlyBody2 >= 0)
{
out_ptr1 = out + onlyBody2*6;
for (j=0; j<6; j++)
out_ptr1[j] = 0;
}
dRealPtr iMJ_ptr = iMJ;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
dRealMutablePtr out_ptr = out + b1*6;
if ((b1 == onlyBody1) || (b1 == onlyBody2))
{
for (j=0; j<6; j++)
out_ptr[j] += iMJ_ptr[j] * in[i] ;
}
iMJ_ptr += 6;
int b2 = jb[i*2+1];
if ((b2 == onlyBody1) || (b2 == onlyBody2))
{
if (b2 >= 0)
{
out_ptr = out + b2*6;
for (j=0; j<6; j++)
out_ptr[j] += iMJ_ptr[j] * in[i];
}
}
iMJ_ptr += 6;
}
}
// compute out = inv(M)*J'*in.
static void multiply_invM_JT (int m, int nb, dRealMutablePtr iMJ, int *jb,
dRealMutablePtr in, dRealMutablePtr out)
{
int i,j;
dSetZero1 (out,6*nb);
dRealPtr iMJ_ptr = iMJ;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
int b2 = jb[i*2+1];
dRealMutablePtr out_ptr = out + b1*6;
for (j=0; j<6; j++)
out_ptr[j] += iMJ_ptr[j] * in[i];
iMJ_ptr += 6;
if (b2 >= 0) {
out_ptr = out + b2*6;
for (j=0; j<6; j++) out_ptr[j] += iMJ_ptr[j] * in[i];
}
iMJ_ptr += 6;
}
}
// compute out = J*in.
static void multiply_J (int m, dRealMutablePtr J, int *jb,
dRealMutablePtr in, dRealMutablePtr out)
{
int i,j;
dRealPtr J_ptr = J;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
int b2 = jb[i*2+1];
SimdScalar sum = 0;
dRealMutablePtr in_ptr = in + b1*6;
for (j=0; j<6; j++) sum += J_ptr[j] * in_ptr[j];
J_ptr += 6;
if (b2 >= 0) {
in_ptr = in + b2*6;
for (j=0; j<6; j++) sum += J_ptr[j] * in_ptr[j];
}
J_ptr += 6;
out[i] = sum;
}
}
//***************************************************************************
// SOR-LCP method
// nb is the number of bodies in the body array.
// J is an m*12 matrix of constraint rows
// jb is an array of first and second body numbers for each constraint row
// invI is the global frame inverse inertia for each body (stacked 3x3 matrices)
//
// this returns lambda and fc (the constraint force).
// note: fc is returned as inv(M)*J'*lambda, the constraint force is actually J'*lambda
//
// b, lo and hi are modified on exit
struct IndexError {
SimdScalar error; // error to sort on
int findex;
int index; // row index
};
static unsigned long seed2 = 0;
unsigned long dRand2()
{
seed2 = (1664525L*seed2 + 1013904223L) & 0xffffffff;
return seed2;
}
int dRandInt2 (int n)
{
float a = float(n) / 4294967296.0f;
return (int) (float(dRand2()) * a);
}
static void SOR_LCP (int m, int nb, dRealMutablePtr J, int *jb, RigidBody * const *body,
dRealPtr invI, dRealMutablePtr lambda, dRealMutablePtr invMforce, dRealMutablePtr rhs,
dRealMutablePtr lo, dRealMutablePtr hi, dRealPtr cfm, int *findex,
int numiter,float overRelax)
{
const int num_iterations = numiter;
const float sor_w = overRelax; // SOR over-relaxation parameter
int i,j;
#ifdef WARM_STARTING
// for warm starting, this seems to be necessary to prevent
// jerkiness in motor-driven joints. i have no idea why this works.
for (i=0; i<m; i++) lambda[i] *= 0.9;
#else
dSetZero1 (lambda,m);
#endif
// the lambda computed at the previous iteration.
// this is used to measure error for when we are reordering the indexes.
dRealAllocaArray (last_lambda,m);
// a copy of the 'hi' vector in case findex[] is being used
dRealAllocaArray (hicopy,m);
memcpy (hicopy,hi,m*sizeof(float));
// precompute iMJ = inv(M)*J'
dRealAllocaArray (iMJ,m*12);
compute_invM_JT (m,J,iMJ,jb,body,invI);
// compute fc=(inv(M)*J')*lambda. we will incrementally maintain fc
// as we change lambda.
#ifdef WARM_STARTING
multiply_invM_JT (m,nb,iMJ,jb,lambda,fc);
#else
dSetZero1 (invMforce,nb*6);
#endif
// precompute 1 / diagonals of A
dRealAllocaArray (Ad,m);
dRealPtr iMJ_ptr = iMJ;
dRealMutablePtr J_ptr = J;
for (i=0; i<m; i++) {
float sum = 0;
for (j=0; j<6; j++) sum += iMJ_ptr[j] * J_ptr[j];
if (jb[i*2+1] >= 0) {
for (j=6; j<12; j++) sum += iMJ_ptr[j] * J_ptr[j];
}
iMJ_ptr += 12;
J_ptr += 12;
Ad[i] = sor_w / (sum + cfm[i]);
}
// scale J and b by Ad
J_ptr = J;
for (i=0; i<m; i++) {
for (j=0; j<12; j++) {
J_ptr[0] *= Ad[i];
J_ptr++;
}
rhs[i] *= Ad[i];
}
// scale Ad by CFM
for (i=0; i<m; i++) Ad[i] *= cfm[i];
// order to solve constraint rows in
IndexError *order = (IndexError*) alloca (m*sizeof(IndexError));
#ifndef REORDER_CONSTRAINTS
// make sure constraints with findex < 0 come first.
j=0;
for (i=0; i<m; i++) if (findex[i] < 0) order[j++].index = i;
for (i=0; i<m; i++) if (findex[i] >= 0) order[j++].index = i;
dIASSERT (j==m);
#endif
for (int iteration=0; iteration < num_iterations; iteration++) {
#ifdef REORDER_CONSTRAINTS
// constraints with findex < 0 always come first.
if (iteration < 2) {
// for the first two iterations, solve the constraints in
// the given order
for (i=0; i<m; i++) {
order[i].error = i;
order[i].findex = findex[i];
order[i].index = i;
}
}
else {
// sort the constraints so that the ones converging slowest
// get solved last. use the absolute (not relative) error.
for (i=0; i<m; i++) {
float v1 = dFabs (lambda[i]);
float v2 = dFabs (last_lambda[i]);
float max = (v1 > v2) ? v1 : v2;
if (max > 0) {
//@@@ relative error: order[i].error = dFabs(lambda[i]-last_lambda[i])/max;
order[i].error = dFabs(lambda[i]-last_lambda[i]);
}
else {
order[i].error = dInfinity;
}
order[i].findex = findex[i];
order[i].index = i;
}
}
qsort (order,m,sizeof(IndexError),&compare_index_error);
#endif
#ifdef RANDOMLY_REORDER_CONSTRAINTS
if ((iteration & 7) == 0) {
for (i=1; i<m; ++i) {
IndexError tmp = order[i];
int swapi = dRandInt2(i+1);
order[i] = order[swapi];
order[swapi] = tmp;
}
}
#endif
//@@@ potential optimization: swap lambda and last_lambda pointers rather
// than copying the data. we must make sure lambda is properly
// returned to the caller
memcpy (last_lambda,lambda,m*sizeof(float));
for (int i=0; i<m; i++) {
// @@@ potential optimization: we could pre-sort J and iMJ, thereby
// linearizing access to those arrays. hmmm, this does not seem
// like a win, but we should think carefully about our memory
// access pattern.
int index = order[i].index;
J_ptr = J + index*12;
iMJ_ptr = iMJ + index*12;
// set the limits for this constraint. note that 'hicopy' is used.
// this is the place where the QuickStep method differs from the
// direct LCP solving method, since that method only performs this
// limit adjustment once per time step, whereas this method performs
// once per iteration per constraint row.
// the constraints are ordered so that all lambda[] values needed have
// already been computed.
if (findex[index] >= 0) {
hi[index] = fabsf (hicopy[index] * lambda[findex[index]]);
lo[index] = -hi[index];
}
int b1 = jb[index*2];
int b2 = jb[index*2+1];
float delta = rhs[index] - lambda[index]*Ad[index];
dRealMutablePtr fc_ptr = invMforce + 6*b1;
// @@@ potential optimization: SIMD-ize this and the b2 >= 0 case
delta -=fc_ptr[0] * J_ptr[0] + fc_ptr[1] * J_ptr[1] +
fc_ptr[2] * J_ptr[2] + fc_ptr[3] * J_ptr[3] +
fc_ptr[4] * J_ptr[4] + fc_ptr[5] * J_ptr[5];
// @@@ potential optimization: handle 1-body constraints in a separate
// loop to avoid the cost of test & jump?
if (b2 >= 0) {
fc_ptr = invMforce + 6*b2;
delta -=fc_ptr[0] * J_ptr[6] + fc_ptr[1] * J_ptr[7] +
fc_ptr[2] * J_ptr[8] + fc_ptr[3] * J_ptr[9] +
fc_ptr[4] * J_ptr[10] + fc_ptr[5] * J_ptr[11];
}
// compute lambda and clamp it to [lo,hi].
// @@@ potential optimization: does SSE have clamping instructions
// to save test+jump penalties here?
float new_lambda = lambda[index] + delta;
if (new_lambda < lo[index]) {
delta = lo[index]-lambda[index];
lambda[index] = lo[index];
}
else if (new_lambda > hi[index]) {
delta = hi[index]-lambda[index];
lambda[index] = hi[index];
}
else {
lambda[index] = new_lambda;
}
//@@@ a trick that may or may not help
//float ramp = (1-((float)(iteration+1)/(float)num_iterations));
//delta *= ramp;
// update invMforce.
// @@@ potential optimization: SIMD for this and the b2 >= 0 case
fc_ptr = invMforce + 6*b1;
fc_ptr[0] += delta * iMJ_ptr[0];
fc_ptr[1] += delta * iMJ_ptr[1];
fc_ptr[2] += delta * iMJ_ptr[2];
fc_ptr[3] += delta * iMJ_ptr[3];
fc_ptr[4] += delta * iMJ_ptr[4];
fc_ptr[5] += delta * iMJ_ptr[5];
// @@@ potential optimization: handle 1-body constraints in a separate
// loop to avoid the cost of test & jump?
if (b2 >= 0) {
fc_ptr = invMforce + 6*b2;
fc_ptr[0] += delta * iMJ_ptr[6];
fc_ptr[1] += delta * iMJ_ptr[7];
fc_ptr[2] += delta * iMJ_ptr[8];
fc_ptr[3] += delta * iMJ_ptr[9];
fc_ptr[4] += delta * iMJ_ptr[10];
fc_ptr[5] += delta * iMJ_ptr[11];
}
}
}
}
void SolveInternal1 (float global_cfm,
float global_erp,
RigidBody * const *body, int nb,
BU_Joint * const *_joint,
int nj,
const ContactSolverInfo& solverInfo)
{
int numIter = 30;
float sOr = 1.3f;
int i,j;
SimdScalar stepsize1 = dRecip(solverInfo.m_timeStep);
// number all bodies in the body list - set their tag values
for (i=0; i<nb; i++)
body[i]->m_odeTag = i;
// make a local copy of the joint array, because we might want to modify it.
// (the "BU_Joint *const*" declaration says we're allowed to modify the joints
// but not the joint array, because the caller might need it unchanged).
//@@@ do we really need to do this? we'll be sorting constraint rows individually, not joints
BU_Joint **joint = (BU_Joint**) alloca (nj * sizeof(BU_Joint*));
memcpy (joint,_joint,nj * sizeof(BU_Joint*));
// for all bodies, compute the inertia tensor and its inverse in the global
// frame, and compute the rotational force and add it to the torque
// accumulator. I and invI are a vertical stack of 3x4 matrices, one per body.
dRealAllocaArray (I,3*4*nb);
dRealAllocaArray (invI,3*4*nb);
/* for (i=0; i<nb; i++) {
dMatrix3 tmp;
// compute inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->m_I,body[i]->m_R);
// compute inverse inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->m_invI,body[i]->m_R);
dMULTIPLY0_333 (invI+i*12,body[i]->m_R,tmp);
// compute rotational force
dCROSS (body[i]->m_tacc,-=,body[i]->getAngularVelocity(),tmp);
}
*/
for (i=0; i<nb; i++) {
dMatrix3 tmp;
// compute inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->m_I,body[i]->m_R);
dMULTIPLY0_333 (I+i*12,body[i]->m_R,tmp);
// compute inverse inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->m_invI,body[i]->m_R);
dMULTIPLY0_333 (invI+i*12,body[i]->m_R,tmp);
// compute rotational force
dMULTIPLY0_331 (tmp,I+i*12,body[i]->getAngularVelocity());
//dCROSS (body[i]->tacc,-=,body[i]->avel,tmp);
dCROSS (body[i]->m_tacc,-=,body[i]->getAngularVelocity(),tmp);
}
// get joint information (m = total constraint dimension, nub = number of unbounded variables).
// joints with m=0 are inactive and are removed from the joints array
// entirely, so that the code that follows does not consider them.
//@@@ do we really need to save all the info1's
BU_Joint::Info1 *info = (BU_Joint::Info1*) alloca (nj*sizeof(BU_Joint::Info1));
for (i=0, j=0; j<nj; j++) { // i=dest, j=src
joint[j]->GetInfo1 (info+i);
dIASSERT (info[i].m >= 0 && info[i].m <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m);
if (info[i].m > 0) {
joint[i] = joint[j];
i++;
}
}
nj = i;
// create the row offset array
int m = 0;
int *ofs = (int*) alloca (nj*sizeof(int));
for (i=0; i<nj; i++) {
ofs[i] = m;
m += info[i].m;
}
// if there are constraints, compute the constraint force
dRealAllocaArray (J,m*12);
int *jb = (int*) alloca (m*2*sizeof(int));
if (m > 0) {
// create a constraint equation right hand side vector `c', a constraint
// force mixing vector `cfm', and LCP low and high bound vectors, and an
// 'findex' vector.
dRealAllocaArray (c,m);
dRealAllocaArray (cfm,m);
dRealAllocaArray (lo,m);
dRealAllocaArray (hi,m);
int *findex = (int*) alloca (m*sizeof(int));
dSetZero1 (c,m);
dSetValue1 (cfm,m,global_cfm);
dSetValue1 (lo,m,-dInfinity);
dSetValue1 (hi,m, dInfinity);
for (i=0; i<m; i++) findex[i] = -1;
// get jacobian data from constraints. an m*12 matrix will be created
// to store the two jacobian blocks from each constraint. it has this
// format:
//
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 \ .
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 }-- jacobian for joint 0, body 1 and body 2 (3 rows)
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 /
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 }--- jacobian for joint 1, body 1 and body 2 (3 rows)
// etc...
//
// (lll) = linear jacobian data
// (aaa) = angular jacobian data
//
dSetZero1 (J,m*12);
BU_Joint::Info2 Jinfo;
Jinfo.rowskip = 12;
Jinfo.fps = stepsize1;
Jinfo.erp = global_erp;
for (i=0; i<nj; i++) {
Jinfo.J1l = J + ofs[i]*12;
Jinfo.J1a = Jinfo.J1l + 3;
Jinfo.J2l = Jinfo.J1l + 6;
Jinfo.J2a = Jinfo.J1l + 9;
Jinfo.c = c + ofs[i];
Jinfo.cfm = cfm + ofs[i];
Jinfo.lo = lo + ofs[i];
Jinfo.hi = hi + ofs[i];
Jinfo.findex = findex + ofs[i];
joint[i]->GetInfo2 (&Jinfo);
if (Jinfo.c[0] > solverInfo.m_maxErrorReduction)
Jinfo.c[0] = solverInfo.m_maxErrorReduction;
// adjust returned findex values for global index numbering
for (j=0; j<info[i].m; j++) {
if (findex[ofs[i] + j] >= 0)
findex[ofs[i] + j] += ofs[i];
}
}
// create an array of body numbers for each joint row
int *jb_ptr = jb;
for (i=0; i<nj; i++) {
int b1 = (joint[i]->node[0].body) ? (joint[i]->node[0].body->m_odeTag) : -1;
int b2 = (joint[i]->node[1].body) ? (joint[i]->node[1].body->m_odeTag) : -1;
for (j=0; j<info[i].m; j++) {
jb_ptr[0] = b1;
jb_ptr[1] = b2;
jb_ptr += 2;
}
}
dIASSERT (jb_ptr == jb+2*m);
// compute the right hand side `rhs'
dRealAllocaArray (tmp1,nb*6);
// put v/h + invM*fe into tmp1
for (i=0; i<nb; i++) {
SimdScalar body_invMass = body[i]->getInvMass();
for (j=0; j<3; j++) tmp1[i*6+j] = body[i]->m_facc[j] * body_invMass + body[i]->getLinearVelocity()[j] * stepsize1;
dMULTIPLY0_331NEW (tmp1 + i*6 + 3,=,invI + i*12,body[i]->m_tacc);
for (j=0; j<3; j++) tmp1[i*6+3+j] += body[i]->getAngularVelocity()[j] * stepsize1;
}
// put J*tmp1 into rhs
dRealAllocaArray (rhs,m);
multiply_J (m,J,jb,tmp1,rhs);
// complete rhs
for (i=0; i<m; i++) rhs[i] = c[i]*stepsize1 - rhs[i];
// scale CFM
for (i=0; i<m; i++)
cfm[i] =0;//*= stepsize1;
// load lambda from the value saved on the previous iteration
dRealAllocaArray (lambda,m);
#ifdef WARM_STARTING
dSetZero1 (lambda,m); //@@@ shouldn't be necessary
for (i=0; i<nj; i++) {
memcpy (lambda+ofs[i],joint[i]->lambda,info[i].m * sizeof(SimdScalar));
}
#endif
// solve the LCP problem and get lambda and invM*constraint_force
dRealAllocaArray (cforce,nb*6);
SOR_LCP (m,nb,J,jb,body,invI,lambda,cforce,rhs,lo,hi,cfm,findex,numIter,sOr);
#ifdef WARM_STARTING
// save lambda for the next iteration
//@@@ note that this doesn't work for contact joints yet, as they are
// recreated every iteration
for (i=0; i<nj; i++) {
memcpy (joint[i]->lambda,lambda+ofs[i],info[i].m * sizeof(SimdScalar));
}
#endif
// note that the SOR method overwrites rhs and J at this point, so
// they should not be used again.
// add stepsize * cforce to the body velocity
for (i=0; i<nb; i++) {
SimdVector3 linvel = body[i]->getLinearVelocity();
SimdVector3 angvel = body[i]->getAngularVelocity();
for (j=0; j<3; j++)
linvel[j] += solverInfo.m_timeStep* cforce[i*6+j];
for (j=0; j<3; j++)
angvel[j] += solverInfo.m_timeStep* cforce[i*6+3+j];
body[i]->setLinearVelocity(linvel);
body[i]->setAngularVelocity(angvel);
}
}
// compute the velocity update:
// add stepsize * invM * fe to the body velocity
for (i=0; i<nb; i++) {
SimdScalar body_invMass = body[i]->getInvMass();
SimdVector3 linvel = body[i]->getLinearVelocity();
SimdVector3 angvel = body[i]->getAngularVelocity();
for (j=0; j<3; j++)
{
linvel[j] += solverInfo.m_timeStep * body_invMass * body[i]->m_facc[j];
}
for (j=0; j<3; j++)
{
body[i]->m_tacc[j] *= solverInfo.m_timeStep;
}
dMULTIPLY0_331NEW(angvel,+=,invI + i*12,body[i]->m_tacc);
body[i]->setAngularVelocity(angvel);
}
}
#endif //USE_SOR_SOLVER