Reverted all changes (i.e., deletion) in release/scripts/freestyle.

This commit is contained in:
Tamito Kajiyama 2009-09-19 22:02:15 +00:00
parent 24c48df98e
commit 1ed4d4cbfb
55 changed files with 4867 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

@ -0,0 +1,731 @@
#
# Filename : ChainingIterators.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Chaining Iterators to be used with chaining operators
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
## the natural chaining iterator
## It follows the edges of same nature following the topology of
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 1,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = it.getObject()
it.increment()
if(count != 1):
winner = None
break
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
## You can specify whether to chain iterate over edges that were
## already visited or not.
class pyChainSilhouetteGenericIterator(ChainingIterator):
def __init__(self, stayInSelection=1, stayInUnvisited=1):
ChainingIterator.__init__(self, stayInSelection, stayInUnvisited,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteGenericIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = ve
it.increment()
if(count != 1):
winner = None
break
return winner
class pyExternalContourChainingIterator(ChainingIterator):
def __init__(self):
ChainingIterator.__init__(self, 0, 1,None,1)
self._isExternalContour = ExternalContourUP1D()
def getExactTypeName(self):
return "pyExternalContourIterator"
def init(self):
self._nEdges = 0
self._isInSelection = 1
def checkViewEdge(self, ve, orientation):
if(orientation != 0):
vertex = ve.B()
else:
vertex = ve.A()
it = AdjacencyIterator(vertex,1,1)
while(it.isEnd() == 0):
ave = it.getObject()
if(self._isExternalContour(ave)):
return 1
it.increment()
print "pyExternlContourChainingIterator : didn't find next edge"
return 0
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(self._isExternalContour(ve)):
if (ve.getTimeStamp() == GetTimeStampCF()):
winner = ve
it.increment()
self._nEdges = self._nEdges+1
if(winner == None):
orient = 1
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(it.isIncoming() != 0):
orient = 0
good = self.checkViewEdge(ve,orient)
if(good != 0):
winner = ve
it.increment()
return winner
## the natural chaining iterator
## with a sketchy multiple touch
class pySketchyChainSilhouetteIterator(ChainingIterator):
def __init__(self, nRounds=3,stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 0,None,1)
self._timeStamp = GetTimeStampCF()+nRounds
self._nRounds = nRounds
def getExactTypeName(self):
return "pySketchyChainSilhouetteIterator"
def init(self):
self._timeStamp = GetTimeStampCF()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = ve
it.increment()
if(count != 1):
winner = None
break
if(winner == None):
winner = self.getCurrentEdge()
if(winner.getChainingTimeStamp() == self._timeStamp):
winner = None
return winner
# Chaining iterator designed for sketchy style.
# can chain several times the same ViewEdge
# in order to produce multiple strokes per ViewEdge.
class pySketchyChainingIterator(ChainingIterator):
def __init__(self, nRounds=3, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 0,None,1)
self._timeStamp = GetTimeStampCF()+nRounds
self._nRounds = nRounds
def getExactTypeName(self):
return "pySketchyChainingIterator"
def init(self):
self._timeStamp = GetTimeStampCF()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
winner = ve
it.increment()
if(winner == None):
winner = self.getCurrentEdge()
if(winner.getChainingTimeStamp() == self._timeStamp):
return None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
def __init__(self, percent):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond()
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print "---", winner.getId().getFirst(), winner.getId().getSecond()
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print "-------- --------", ve.getId().getFirst(), ve.getId().getSecond()
connexl = connexl + ve.getLength2D()
_cit.increment()
if(connexl > self._percent * self._length):
winner = None
return winner
## Chaining iterator that fills small occlusions
## size
## The max length of the occluded part
## expressed in pixels
class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
def __init__(self, length):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = float(length)
def getExactTypeName(self):
return "pySmallFillOcclusionsChainingIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
winnerOrientation = 0
#print self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond()
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print "---", winner.getId().getFirst(), winner.getId().getSecond()
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print "-------- --------", ve.getId().getFirst(), ve.getId().getSecond()
connexl = connexl + ve.getLength2D()
_cit.increment()
if(connexl > self._length):
winner = None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._absLength = l
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond()
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print "---", winner.getId().getFirst(), winner.getId().getSecond()
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print "-------- --------", ve.getId().getFirst(), ve.getId().getSecond()
connexl = connexl + ve.getLength2D()
_cit.increment()
if((connexl > self._percent * self._length) or (connexl > self._absLength)):
winner = None
return winner
## Chaining iterator that fills small occlusions without caring about the
## actual selection
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._absLength = l
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond()
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.qi() != 0):
#print "---", winner.getId().getFirst(), winner.getId().getSecond()
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().qi() != 0)):
ve = _cit.getObject()
#print "-------- --------", ve.getId().getFirst(), ve.getId().getSecond()
connexl = connexl + ve.getLength2D()
_cit.increment()
if((connexl > self._percent * self._length) or (connexl > self._absLength)):
winner = None
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyNoIdChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 1,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
feB = self.getCurrentEdge().fedgeB()
feA = ve.fedgeA()
vB = feB.vertexB()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeA()
feB = ve.fedgeB()
vB = feB.vertexB()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeB()
feB = ve.fedgeB()
vB = feB.vertexB()
vA = feA.vertexB()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeA()
feB = ve.fedgeA()
vB = feB.vertexA()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = it.getObject()
it.increment()
if(count != 1):
winner = None
break
return winner

@ -0,0 +1,81 @@
from freestyle_init import *
class pyInverseCurvature2DAngleF0D(UnaryFunction0DDouble):
def getName(self):
return "InverseCurvature2DAngleF0D"
def __call__(self, inter):
func = Curvature2DAngleF0D()
c = func(inter)
return (3.1415 - c)
class pyCurvilinearLengthF0D(UnaryFunction0DDouble):
def getName(self):
return "CurvilinearLengthF0D"
def __call__(self, inter):
i0d = inter.getObject()
s = i0d.getExactTypeName()
if (string.find(s, "CurvePoint") == -1):
print "CurvilinearLengthF0D: not implemented yet for %s" % (s)
return -1
cp = castToCurvePoint(i0d)
return cp.t2d()
## estimate anisotropy of density
class pyDensityAnisotropyF0D(UnaryFunction0DDouble):
def __init__(self,level):
UnaryFunction0DDouble.__init__(self)
self.IsoDensity = ReadCompleteViewMapPixelF0D(level)
self.d0Density = ReadSteerableViewMapPixelF0D(0, level)
self.d1Density = ReadSteerableViewMapPixelF0D(1, level)
self.d2Density = ReadSteerableViewMapPixelF0D(2, level)
self.d3Density = ReadSteerableViewMapPixelF0D(3, level)
def getName(self):
return "pyDensityAnisotropyF0D"
def __call__(self, inter):
c_iso = self.IsoDensity(inter)
c_0 = self.d0Density(inter)
c_1 = self.d1Density(inter)
c_2 = self.d2Density(inter)
c_3 = self.d3Density(inter)
cMax = max( max(c_0,c_1), max(c_2,c_3))
cMin = min( min(c_0,c_1), min(c_2,c_3))
if ( c_iso == 0 ):
v = 0
else:
v = (cMax-cMin)/c_iso
return (v)
## Returns the gradient vector for a pixel
## l
## the level at which one wants to compute the gradient
class pyViewMapGradientVectorF0D(UnaryFunction0DVec2f):
def __init__(self, l):
UnaryFunction0DVec2f.__init__(self)
self._l = l
self._step = pow(2,self._l)
def getName(self):
return "pyViewMapGradientVectorF0D"
def __call__(self, iter):
p = iter.getObject().getPoint2D()
gx = ReadCompleteViewMapPixelCF(self._l, int(p.x()+self._step), int(p.y()))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
gy = ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()+self._step))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
return Vector(gx, gy)
class pyViewMapGradientNormF0D(UnaryFunction0DDouble):
def __init__(self, l):
UnaryFunction0DDouble.__init__(self)
self._l = l
self._step = pow(2,self._l)
def getName(self):
return "pyViewMapGradientNormF0D"
def __call__(self, iter):
p = iter.getObject().getPoint2D()
gx = ReadCompleteViewMapPixelCF(self._l, int(p.x()+self._step), int(p.y()))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
gy = ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()+self._step))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
grad = Vector(gx, gy)
return grad.length

@ -0,0 +1,45 @@
from freestyle_init import *
from Functions0D import *
import string
class pyGetInverseProjectedZF1D(UnaryFunction1DDouble):
def getName(self):
return "pyGetInverseProjectedZF1D"
def __call__(self, inter):
func = GetProjectedZF1D()
z = func(inter)
return (1.0 - z)
class pyGetSquareInverseProjectedZF1D(UnaryFunction1DDouble):
def getName(self):
return "pyGetInverseProjectedZF1D"
def __call__(self, inter):
func = GetProjectedZF1D()
z = func(inter)
return (1.0 - z*z)
class pyDensityAnisotropyF1D(UnaryFunction1DDouble):
def __init__(self,level, integrationType=IntegrationType.MEAN, sampling=2.0):
UnaryFunction1DDouble.__init__(self, integrationType)
self._func = pyDensityAnisotropyF0D(level)
self._integration = integrationType
self._sampling = sampling
def getName(self):
return "pyDensityAnisotropyF1D"
def __call__(self, inter):
v = integrate(self._func, inter.pointsBegin(self._sampling), inter.pointsEnd(self._sampling), self._integration)
return v
class pyViewMapGradientNormF1D(UnaryFunction1DDouble):
def __init__(self,l, integrationType, sampling=2.0):
UnaryFunction1DDouble.__init__(self, integrationType)
self._func = pyViewMapGradientNormF0D(l)
self._integration = integrationType
self._sampling = sampling
def getName(self):
return "pyViewMapGradientNormF1D"
def __call__(self, inter):
v = integrate(self._func, inter.pointsBegin(self._sampling), inter.pointsEnd(self._sampling), self._integration)
return v

@ -0,0 +1,70 @@
from freestyle_init import *
from Functions1D import *
from random import *
class pyZBP1D(BinaryPredicate1D):
def getName(self):
return "pyZBP1D"
def __call__(self, i1, i2):
func = GetZF1D()
return (func(i1) > func(i2))
class pyZDiscontinuityBP1D(BinaryPredicate1D):
def __init__(self, iType = IntegrationType.MEAN):
BinaryPredicate1D.__init__(self)
self._GetZDiscontinuity = ZDiscontinuityF1D(iType)
def getName(self):
return "pyZDiscontinuityBP1D"
def __call__(self, i1, i2):
return (self._GetZDiscontinuity(i1) > self._GetZDiscontinuity(i2))
class pyLengthBP1D(BinaryPredicate1D):
def getName(self):
return "LengthBP1D"
def __call__(self, i1, i2):
return (i1.getLength2D() > i2.getLength2D())
class pySilhouetteFirstBP1D(BinaryPredicate1D):
def getName(self):
return "SilhouetteFirstBP1D"
def __call__(self, inter1, inter2):
bpred = SameShapeIdBP1D()
if (bpred(inter1, inter2) != 1):
return 0
if (inter1.getNature() & Nature.SILHOUETTE):
return (inter2.getNature() & Nature.SILHOUETTE)
return (inter1.getNature() == inter2.getNature())
class pyNatureBP1D(BinaryPredicate1D):
def getName(self):
return "NatureBP1D"
def __call__(self, inter1, inter2):
return (inter1.getNature() & inter2.getNature())
class pyViewMapGradientNormBP1D(BinaryPredicate1D):
def __init__(self,l, sampling=2.0):
BinaryPredicate1D.__init__(self)
self._GetGradient = pyViewMapGradientNormF1D(l, IntegrationType.MEAN)
def getName(self):
return "pyViewMapGradientNormBP1D"
def __call__(self, i1,i2):
print "compare gradient"
return (self._GetGradient(i1) > self._GetGradient(i2))
class pyShuffleBP1D(BinaryPredicate1D):
def __init__(self):
BinaryPredicate1D.__init__(self)
seed(1)
def getName(self):
return "pyNearAndContourFirstBP1D"
def __call__(self, inter1, inter2):
r1 = uniform(0,1)
r2 = uniform(0,1)
return (r1<r2)

@ -0,0 +1,103 @@
from freestyle_init import *
from Functions0D import *
class pyHigherCurvature2DAngleUP0D(UnaryPredicate0D):
def __init__(self,a):
UnaryPredicate0D.__init__(self)
self._a = a
def getName(self):
return "HigherCurvature2DAngleUP0D"
def __call__(self, inter):
func = Curvature2DAngleF0D()
a = func(inter)
return ( a > self._a)
class pyUEqualsUP0D(UnaryPredicate0D):
def __init__(self,u, w):
UnaryPredicate0D.__init__(self)
self._u = u
self._w = w
def getName(self):
return "UEqualsUP0D"
def __call__(self, inter):
func = pyCurvilinearLengthF0D()
u = func(inter)
return ( ( u > (self._u-self._w) ) and ( u < (self._u+self._w) ) )
class pyVertexNatureUP0D(UnaryPredicate0D):
def __init__(self,nature):
UnaryPredicate0D.__init__(self)
self._nature = nature
def getName(self):
return "pyVertexNatureUP0D"
def __call__(self, inter):
v = inter.getObject()
nat = v.getNature()
if(nat & self._nature):
return 1;
return 0
## check whether an Interface0DIterator
## is a TVertex and is the one that is
## hidden (inferred from the context)
class pyBackTVertexUP0D(UnaryPredicate0D):
def __init__(self):
UnaryPredicate0D.__init__(self)
self._getQI = QuantitativeInvisibilityF0D()
def getName(self):
return "pyBackTVertexUP0D"
def __call__(self, iter):
v = iter.getObject()
nat = v.getNature()
if(nat & Nature.T_VERTEX == 0):
return 0
next = iter
if(next.isEnd()):
return 0
if(self._getQI(next) != 0):
return 1
return 0
class pyParameterUP0DGoodOne(UnaryPredicate0D):
def __init__(self,pmin,pmax):
UnaryPredicate0D.__init__(self)
self._m = pmin
self._M = pmax
#self.getCurvilinearAbscissa = GetCurvilinearAbscissaF0D()
def getName(self):
return "pyCurvilinearAbscissaHigherThanUP0D"
def __call__(self, inter):
#s = self.getCurvilinearAbscissa(inter)
u = inter.u()
#print u
return ((u>=self._m) and (u<=self._M))
class pyParameterUP0D(UnaryPredicate0D):
def __init__(self,pmin,pmax):
UnaryPredicate0D.__init__(self)
self._m = pmin
self._M = pmax
#self.getCurvilinearAbscissa = GetCurvilinearAbscissaF0D()
def getName(self):
return "pyCurvilinearAbscissaHigherThanUP0D"
def __call__(self, inter):
func = Curvature2DAngleF0D()
c = func(inter)
b1 = (c>0.1)
#s = self.getCurvilinearAbscissa(inter)
u = inter.u()
#print u
b = ((u>=self._m) and (u<=self._M))
return b and b1

@ -0,0 +1,381 @@
from freestyle_init import *
from Functions1D import *
count = 0
class pyNFirstUP1D(UnaryPredicate1D):
def __init__(self, n):
UnaryPredicate1D.__init__(self)
self.__n = n
def __call__(self, inter):
global count
count = count + 1
if count <= self.__n:
return 1
return 0
class pyHigherLengthUP1D(UnaryPredicate1D):
def __init__(self,l):
UnaryPredicate1D.__init__(self)
self._l = l
def getName(self):
return "HigherLengthUP1D"
def __call__(self, inter):
return (inter.getLength2D() > self._l)
class pyNatureUP1D(UnaryPredicate1D):
def __init__(self,nature):
UnaryPredicate1D.__init__(self)
self._nature = nature
self._getNature = CurveNatureF1D()
def getName(self):
return "pyNatureUP1D"
def __call__(self, inter):
if(self._getNature(inter) & self._nature):
return 1
return 0
class pyHigherNumberOfTurnsUP1D(UnaryPredicate1D):
def __init__(self,n,a):
UnaryPredicate1D.__init__(self)
self._n = n
self._a = a
def getName(self):
return "HigherNumberOfTurnsUP1D"
def __call__(self, inter):
count = 0
func = Curvature2DAngleF0D()
it = inter.verticesBegin()
while(it.isEnd() == 0):
if(func(it) > self._a):
count = count+1
if(count > self._n):
return 1
it.increment()
return 0
class pyDensityUP1D(UnaryPredicate1D):
def __init__(self,wsize,threshold, integration = IntegrationType.MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = threshold
self._integration = integration
self._func = DensityF1D(self._wsize, self._integration, sampling)
def getName(self):
return "pyDensityUP1D"
def __call__(self, inter):
if(self._func(inter) < self._threshold):
return 1
return 0
class pyLowSteerableViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, level,integration = IntegrationType.MEAN):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._level = level
self._integration = integration
def getName(self):
return "pyLowSteerableViewMapDensityUP1D"
def __call__(self, inter):
func = GetSteerableViewMapDensityF1D(self._level, self._integration)
v = func(inter)
print v
if(v < self._threshold):
return 1
return 0
class pyLowDirectionalViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, orientation, level,integration = IntegrationType.MEAN):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._orientation = orientation
self._level = level
self._integration = integration
def getName(self):
return "pyLowDirectionalViewMapDensityUP1D"
def __call__(self, inter):
func = GetDirectionalViewMapDensityF1D(self._orientation, self._level, self._integration)
v = func(inter)
#print v
if(v < self._threshold):
return 1
return 0
class pyHighSteerableViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, level,integration = IntegrationType.MEAN):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._level = level
self._integration = integration
self._func = GetSteerableViewMapDensityF1D(self._level, self._integration)
def getName(self):
return "pyHighSteerableViewMapDensityUP1D"
def __call__(self, inter):
v = self._func(inter)
if(v > self._threshold):
return 1
return 0
class pyHighDirectionalViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, orientation, level,integration = IntegrationType.MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._orientation = orientation
self._level = level
self._integration = integration
self._sampling = sampling
def getName(self):
return "pyLowDirectionalViewMapDensityUP1D"
def __call__(self, inter):
func = GetDirectionalViewMapDensityF1D(self._orientation, self._level, self._integration, self._sampling)
v = func(inter)
if(v > self._threshold):
return 1
return 0
class pyHighViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, level,integration = IntegrationType.MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._level = level
self._integration = integration
self._sampling = sampling
self._func = GetCompleteViewMapDensityF1D(self._level, self._integration, self._sampling) # 2.0 is the smpling
def getName(self):
return "pyHighViewMapDensityUP1D"
def __call__(self, inter):
#print "toto"
#print func.getName()
#print inter.getExactTypeName()
v= self._func(inter)
if(v > self._threshold):
return 1
return 0
class pyDensityFunctorUP1D(UnaryPredicate1D):
def __init__(self,wsize,threshold, functor, funcmin=0.0, funcmax=1.0, integration = IntegrationType.MEAN):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = float(threshold)
self._functor = functor
self._funcmin = float(funcmin)
self._funcmax = float(funcmax)
self._integration = integration
def getName(self):
return "pyDensityFunctorUP1D"
def __call__(self, inter):
func = DensityF1D(self._wsize, self._integration)
res = self._functor(inter)
k = (res-self._funcmin)/(self._funcmax-self._funcmin)
if(func(inter) < self._threshold*k):
return 1
return 0
class pyZSmallerUP1D(UnaryPredicate1D):
def __init__(self,z, integration=IntegrationType.MEAN):
UnaryPredicate1D.__init__(self)
self._z = z
self._integration = integration
def getName(self):
return "pyZSmallerUP1D"
def __call__(self, inter):
func = GetProjectedZF1D(self._integration)
if(func(inter) < self._z):
return 1
return 0
class pyIsOccludedByUP1D(UnaryPredicate1D):
def __init__(self,id):
UnaryPredicate1D.__init__(self)
self._id = id
def getName(self):
return "pyIsOccludedByUP1D"
def __call__(self, inter):
func = GetShapeF1D()
shapes = func(inter)
for s in shapes:
if(s.getId() == self._id):
return 0
it = inter.verticesBegin()
itlast = inter.verticesEnd()
itlast.decrement()
v = it.getObject()
vlast = itlast.getObject()
tvertex = v.viewvertex()
if type(tvertex) is TVertex:
print "TVertex: [ ", tvertex.getId().getFirst(), ",", tvertex.getId().getSecond()," ]"
eit = tvertex.edgesBegin()
while(eit.isEnd() == 0):
ve, incoming = eit.getObject()
if(ve.getId() == self._id):
return 1
print "-------", ve.getId().getFirst(), "-", ve.getId().getSecond()
eit.increment()
tvertex = vlast.viewvertex()
if type(tvertex) is TVertex:
print "TVertex: [ ", tvertex.getId().getFirst(), ",", tvertex.getId().getSecond()," ]"
eit = tvertex.edgesBegin()
while(eit.isEnd() == 0):
ve, incoming = eit.getObject()
if(ve.getId() == self._id):
return 1
print "-------", ve.getId().getFirst(), "-", ve.getId().getSecond()
eit.increment()
return 0
class pyIsInOccludersListUP1D(UnaryPredicate1D):
def __init__(self,id):
UnaryPredicate1D.__init__(self)
self._id = id
def getName(self):
return "pyIsInOccludersListUP1D"
def __call__(self, inter):
func = GetOccludersF1D()
occluders = func(inter)
for a in occluders:
if(a.getId() == self._id):
return 1
return 0
class pyIsOccludedByItselfUP1D(UnaryPredicate1D):
def __init__(self):
UnaryPredicate1D.__init__(self)
self.__func1 = GetOccludersF1D()
self.__func2 = GetShapeF1D()
def getName(self):
return "pyIsOccludedByItselfUP1D"
def __call__(self, inter):
lst1 = self.__func1(inter)
lst2 = self.__func2(inter)
for vs1 in lst1:
for vs2 in lst2:
if vs1.getId() == vs2.getId():
return 1
return 0
class pyIsOccludedByIdListUP1D(UnaryPredicate1D):
def __init__(self, idlist):
UnaryPredicate1D.__init__(self)
self._idlist = idlist
self.__func1 = GetOccludersF1D()
def getName(self):
return "pyIsOccludedByIdListUP1D"
def __call__(self, inter):
lst1 = self.__func1(inter)
for vs1 in lst1:
for id in self._idlist:
if vs1.getId() == id:
return 1
return 0
class pyShapeIdListUP1D(UnaryPredicate1D):
def __init__(self,idlist):
UnaryPredicate1D.__init__(self)
self._idlist = idlist
self._funcs = []
for id in idlist :
self._funcs.append(ShapeUP1D(id.getFirst(), id.getSecond()))
def getName(self):
return "pyShapeIdUP1D"
def __call__(self, inter):
for func in self._funcs :
if(func(inter) == 1) :
return 1
return 0
## deprecated
class pyShapeIdUP1D(UnaryPredicate1D):
def __init__(self,id):
UnaryPredicate1D.__init__(self)
self._id = id
def getName(self):
return "pyShapeIdUP1D"
def __call__(self, inter):
func = GetShapeF1D()
shapes = func(inter)
for a in shapes:
if(a.getId() == self._id):
return 1
return 0
class pyHighDensityAnisotropyUP1D(UnaryPredicate1D):
def __init__(self,threshold, level, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._l = threshold
self.func = pyDensityAnisotropyF1D(level, IntegrationType.MEAN, sampling)
def getName(self):
return "pyHighDensityAnisotropyUP1D"
def __call__(self, inter):
return (self.func(inter) > self._l)
class pyHighViewMapGradientNormUP1D(UnaryPredicate1D):
def __init__(self,threshold, l, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._GetGradient = pyViewMapGradientNormF1D(l, IntegrationType.MEAN)
def getName(self):
return "pyHighViewMapGradientNormUP1D"
def __call__(self, inter):
gn = self._GetGradient(inter)
#print gn
return (gn > self._threshold)
class pyDensityVariableSigmaUP1D(UnaryPredicate1D):
def __init__(self,functor, sigmaMin,sigmaMax, lmin, lmax, tmin, tmax, integration = IntegrationType.MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._functor = functor
self._sigmaMin = float(sigmaMin)
self._sigmaMax = float(sigmaMax)
self._lmin = float(lmin)
self._lmax = float(lmax)
self._tmin = tmin
self._tmax = tmax
self._integration = integration
self._sampling = sampling
def getName(self):
return "pyDensityUP1D"
def __call__(self, inter):
sigma = (self._sigmaMax-self._sigmaMin)/(self._lmax-self._lmin)*(self._functor(inter)-self._lmin) + self._sigmaMin
t = (self._tmax-self._tmin)/(self._lmax-self._lmin)*(self._functor(inter)-self._lmin) + self._tmin
if(sigma<self._sigmaMin):
sigma = self._sigmaMin
self._func = DensityF1D(sigma, self._integration, self._sampling)
d = self._func(inter)
if(d<t):
return 1
return 0
class pyClosedCurveUP1D(UnaryPredicate1D):
def __call__(self, inter):
it = inter.verticesBegin()
itlast = inter.verticesEnd()
itlast.decrement()
vlast = itlast.getObject()
v = it.getObject()
print v.getId().getFirst(), v.getId().getSecond()
print vlast.getId().getFirst(), vlast.getId().getSecond()
if(v.getId() == vlast.getId()):
return 1
return 0

@ -0,0 +1,74 @@
#
# Filename : anisotropic_diffusion.py
# Author : Fredo Durand
# Date : 12/08/2004
# Purpose : Smoothes lines using an anisotropic diffusion scheme
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
from PredicatesU0D import *
from math import *
## thickness modifiers
normalInfo=Normal2DF0D()
curvatureInfo=Curvature2DAngleF0D()
def edgestopping(x, sigma):
return exp(- x*x/(2*sigma*sigma))
class pyDiffusion2Shader(StrokeShader):
def __init__(self, lambda1, nbIter):
StrokeShader.__init__(self)
self._lambda = lambda1
self._nbIter = nbIter
def getName(self):
return "pyDiffusionShader"
def shade(self, stroke):
for i in range (1, self._nbIter):
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
v=it.getObject()
p1 = v.getPoint()
p2 = normalInfo(it.castToInterface0DIterator())*self._lambda*curvatureInfo(it.castToInterface0DIterator())
v.setPoint(p1+p2)
it.increment()
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select( upred )
bpred = TrueBP1D();
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred) )
shaders_list = [
ConstantThicknessShader(4),
StrokeTextureShader("smoothAlpha.bmp", Stroke.OPAQUE_MEDIUM, 0),
SamplingShader(2),
pyDiffusion2Shader(-0.03, 30),
IncreasingColorShader(1.0,0.0,0.0,1, 0, 1, 0, 1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,45 @@
#
# Filename : apriori_and_causal_density.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Selects the lines with high a priori density and
# subjects them to the causal density so as to avoid
# cluttering
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.3, IntegrationType.LAST))
Operators.select(upred)
bpred = TrueBP1D()
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
ConstantThicknessShader(2),
ConstantColorShader(0.0, 0.0, 0.0,1)
]
Operators.create(pyDensityUP1D(1,0.1, IntegrationType.MEAN), shaders_list)

@ -0,0 +1,43 @@
#
# Filename : apriori_density.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws lines having a high a priori density
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.1,5)))
bpred = TrueBP1D()
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.0007,5))
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
ConstantThicknessShader(2),
ConstantColorShader(0.0, 0.0, 0.0,1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,36 @@
#
# Filename : backbone_stretcher.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Stretches the geometry of visible lines
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [TextureAssignerShader(4), ConstantColorShader(0.5, 0.5, 0.5), BackboneStretcherShader(20)]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,46 @@
#
# Filename : blueprint_circles.py
# Author : Emmanuel Turquin
# Date : 04/08/2005
# Purpose : Produces a blueprint using circular contour strokes
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
bpred = SameShapeIdBP1D()
Operators.select(upred)
Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
Operators.select(pyHigherLengthUP1D(200))
shaders_list = [
ConstantThicknessShader(5),
pyBluePrintCirclesShader(3),
pyPerlinNoise1DShader(0.1, 15, 8),
TextureAssignerShader(4),
IncreasingColorShader(0.8, 0.8, 0.3, 0.4, 0.3, 0.3, 0.3, 0.1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,46 @@
#
# Filename : blueprint_ellipses.py
# Author : Emmanuel Turquin
# Date : 04/08/2005
# Purpose : Produces a blueprint using elliptic contour strokes
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
bpred = SameShapeIdBP1D()
Operators.select(upred)
Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
Operators.select(pyHigherLengthUP1D(200))
shaders_list = [
ConstantThicknessShader(5),
pyBluePrintEllipsesShader(3),
pyPerlinNoise1DShader(0.1, 10, 8),
TextureAssignerShader(4),
IncreasingColorShader(0.6, 0.3, 0.3, 0.7, 0.3, 0.3, 0.3, 0.1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,45 @@
# Filename : blueprint_squares.py
# Author : Emmanuel Turquin
# Date : 04/08/2005
# Purpose : Produces a blueprint using square contour strokes
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
bpred = SameShapeIdBP1D()
Operators.select(upred)
Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
Operators.select(pyHigherLengthUP1D(200))
shaders_list = [
ConstantThicknessShader(8),
pyBluePrintSquaresShader(2, 20),
pyPerlinNoise1DShader(0.07, 10, 8),
TextureAssignerShader(4),
IncreasingColorShader(0.6, 0.3, 0.3, 0.7, 0.6, 0.3, 0.3, 0.3),
ConstantThicknessShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,42 @@
#
# Filename : cartoon.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws colored lines. The color is automatically
# infered from each object's material in a cartoon-like
# fashion.
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
BezierCurveShader(3),
ConstantThicknessShader(4),
pyMaterialColorShader(0.8)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,42 @@
#
# Filename : contour.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws each object's visible contour
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D() ) )
bpred = SameShapeIdBP1D();
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
ConstantThicknessShader(5.0),
IncreasingColorShader(0.8,0,0,1,0.1,0,0,1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,60 @@
#
# Filename : curvature2d.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The stroke points are colored in gray levels and depending
# on the 2d curvature value
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
class py2DCurvatureColorShader(StrokeShader):
def getName(self):
return "py2DCurvatureColorShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
func = Curvature2DAngleF0D()
while it.isEnd() == 0:
it0D = it.castToInterface0DIterator()
sv = it.getObject()
att = sv.attribute()
c = func(it0D)
if (c<0):
print "negative 2D curvature"
color = 10.0 * c/3.1415
att.setColor(color,color,color);
it.increment()
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
StrokeTextureShader("smoothAlpha.bmp", Stroke.OPAQUE_MEDIUM, 0),
ConstantThicknessShader(5),
py2DCurvatureColorShader()
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,43 @@
#
# Filename : external_contour.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the external contour of the scene
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from ChainingIterators import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select(upred )
bpred = TrueBP1D();
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred))
shaders_list = [
ConstantThicknessShader(3),
ConstantColorShader(0.0, 0.0, 0.0,1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,48 @@
#
# Filename : external_contour_sketchy.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the external contour of the scene using a sketchy
# chaining iterator (in particular each ViewEdge can be drawn
# several times
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select(upred)
Operators.bidirectionalChain(pySketchyChainingIterator(), NotUP1D(upred))
shaders_list = [
SamplingShader(4),
SpatialNoiseShader(10, 150, 2, 1, 1),
IncreasingThicknessShader(4, 10),
SmoothingShader(400, 0.1, 0, 0.2, 0, 0, 0, 1),
IncreasingColorShader(1,0,0,1,0,1,0,1),
TextureAssignerShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,44 @@
#
# Filename : external_contour_smooth.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws a smooth external contour
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
from ChainingIterators import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select(upred)
bpred = TrueBP1D();
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred))
shaders_list = [
SamplingShader(2),
IncreasingThicknessShader(4,20),
IncreasingColorShader(1.0, 0.0, 0.5,1, 0.5,1, 0.3, 1),
SmoothingShader(100, 0.05, 0, 0.2, 0, 0, 0, 1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,3 @@
1suggestive.py
1ridges.py
1nor_suggestive_or_ridges.py

@ -0,0 +1,2 @@
from Blender.Freestyle import *
from Blender.Mathutils import Vector

@ -0,0 +1,50 @@
#
# Filename : haloing.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : This style module selects the lines that
# are connected (in the image) to a specific
# object and trims them in order to produce
# a haloing effect around the target shape
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesB1D import *
from shaders import *
# id corresponds to the id of the target object
# (accessed by SHIFT+click)
id = Id(3,0)
upred = AndUP1D(QuantitativeInvisibilityUP1D(0) , pyIsOccludedByUP1D(id))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
IncreasingThicknessShader(3, 5),
IncreasingColorShader(1,0,0, 1,0,1,0,1),
SamplingShader(1.0),
pyTVertexRemoverShader(),
TipRemoverShader(3.0)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,41 @@
#
# Filename : ignore_small_oclusions.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The strokes are drawn through small occlusions
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
#Operators.bidirectionalChain(pyFillOcclusionsChainingIterator(0.1))
Operators.bidirectionalChain(pyFillOcclusionsAbsoluteChainingIterator(12))
shaders_list = [
SamplingShader(5.0),
ConstantThicknessShader(3),
ConstantColorShader(0.0,0.0,0.0),
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,42 @@
#
# Filename : invisible_lines.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws all lines whose Quantitative Invisibility
# is different from 0
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
upred = NotUP1D(QuantitativeInvisibilityUP1D(0))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
SamplingShader(5.0),
ConstantThicknessShader(3.0),
ConstantColorShader(0.7,0.7,0.7)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,60 @@
#
# Filename : japanese_bigbrush.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Simulates a big brush fr oriental painting
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesB1D import *
from Functions0D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
## Splits strokes at points of highest 2D curavture
## when there are too many abrupt turns in it
func = pyInverseCurvature2DAngleF0D()
Operators.recursiveSplit(func, pyParameterUP0D(0.2,0.8), NotUP1D(pyHigherNumberOfTurnsUP1D(3, 0.5)), 2)
## Keeps only long enough strokes
Operators.select(pyHigherLengthUP1D(100))
## Sorts so as to draw the longest strokes first
## (this will be done using the causal density)
Operators.sort(pyLengthBP1D())
shaders_list = [
pySamplingShader(10),
BezierCurveShader(30),
SamplingShader(50),
ConstantThicknessShader(10),
pyNonLinearVaryingThicknessShader(4,25, 0.6),
TextureAssignerShader(6),
ConstantColorShader(0.2, 0.2, 0.2,1.0),
TipRemoverShader(10)
]
## Use the causal density to avoid cluttering
Operators.create(pyDensityUP1D(8,0.4, IntegrationType.MEAN), shaders_list)

@ -0,0 +1,36 @@
from freestyle_init import *
class AndUP1D(UnaryPredicate1D):
def __init__(self, pred1, pred2):
UnaryPredicate1D.__init__(self)
self.__pred1 = pred1
self.__pred2 = pred2
def getName(self):
return "AndUP1D"
def __call__(self, inter):
return self.__pred1(inter) and self.__pred2(inter)
class OrUP1D(UnaryPredicate1D):
def __init__(self, pred1, pred2):
UnaryPredicate1D.__init__(self)
self.__pred1 = pred1
self.__pred2 = pred2
def getName(self):
return "OrUP1D"
def __call__(self, inter):
return self.__pred1(inter) or self.__pred2(inter)
class NotUP1D(UnaryPredicate1D):
def __init__(self, pred):
UnaryPredicate1D.__init__(self)
self.__pred = pred
def getName(self):
return "NotUP1D"
def __call__(self, inter):
return self.__pred(inter) == 0

@ -0,0 +1,81 @@
#
# Filename : long_anisotropically_dense.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Selects the lines that are long and have a high anisotropic
# a priori density and uses causal density
# to draw without cluttering. Ideally, half of the
# selected lines are culled using the causal density.
#
# ********************* WARNING *************************************
# ******** The Directional a priori density maps must ******
# ******** have been computed prior to using this style module ******
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesU0D import *
from PredicatesB1D import *
from Functions0D import *
from Functions1D import *
from shaders import *
## custom density predicate
class pyDensityUP1D(UnaryPredicate1D):
def __init__(self,wsize,threshold, integration = IntegrationType.MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = threshold
self._integration = integration
self._func = DensityF1D(self._wsize, self._integration, sampling)
self._func2 = DensityF1D(self._wsize, IntegrationType.MAX, sampling)
def getName(self):
return "pyDensityUP1D"
def __call__(self, inter):
c = self._func(inter)
m = self._func2(inter)
if(c < self._threshold):
return 1
if( m > 4* c ):
if ( c < 1.5*self._threshold ):
return 1
return 0
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
Operators.select(pyHigherLengthUP1D(40))
## selects lines having a high anisotropic a priori density
Operators.select(pyHighDensityAnisotropyUP1D(0.3,4))
Operators.sort(pyLengthBP1D())
shaders_list = [
SamplingShader(2.0),
ConstantThicknessShader(2),
ConstantColorShader(0.2,0.2,0.25,1),
]
## uniform culling
Operators.create(pyDensityUP1D(3.0,2.0e-2, IntegrationType.MEAN, 0.1), shaders_list)

@ -0,0 +1,51 @@
#
# Filename : multiple_parameterization.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The thickness and the color of the strokes vary continuously
# independently from occlusions although only
# visible lines are actually drawn. This is equivalent
# to assigning the thickness using a parameterization covering
# the complete silhouette (visible+invisible) and drawing
# the strokes using a second parameterization that only
# covers the visible portions.
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
## Chain following the same nature, but without the restriction
## of staying inside the selection (0).
Operators.bidirectionalChain(ChainSilhouetteIterator(0))
shaders_list = [
SamplingShader(20),
IncreasingThicknessShader(1.5, 30),
ConstantColorShader(0.0,0.0,0.0),
IncreasingColorShader(1,0,0,1,0,1,0,1),
TextureAssignerShader(-1),
pyHLRShader() ## this shader draws only visible portions
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,43 @@
#
# Filename : nature.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Uses the NatureUP1D predicate to select the lines
# of a given type (among Nature.SILHOUETTE, Nature.CREASE, Nature.SUGGESTIVE_CONTOURS,
# Nature.BORDERS).
# The suggestive contours must have been enabled in the
# options dialog to appear in the View Map.
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(pyNatureUP1D(Nature.SILHOUETTE))
Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D( pyNatureUP1D( Nature.SILHOUETTE) ) )
shaders_list = [
IncreasingThicknessShader(3, 10),
IncreasingColorShader(0.0,0.0,0.0, 1, 0.8,0,0,1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,44 @@
#
# Filename : near_lines.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the lines that are "closer" than a threshold
# (between 0 and 1)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyZSmallerUP1D(0.5, IntegrationType.MEAN))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
TextureAssignerShader(-1),
ConstantThicknessShader(5),
ConstantColorShader(0.0, 0.0, 0.0)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,45 @@
#
# Filename : occluded_by_specific_object.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws only the lines that are occluded by a given object
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesU1D import *
from shaders import *
## the id of the occluder (use SHIFT+click on the ViewMap to
## retrieve ids)
id = Id(3,0)
upred = AndUP1D(NotUP1D(QuantitativeInvisibilityUP1D(0)),
pyIsInOccludersListUP1D(id))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
SamplingShader(5),
ConstantThicknessShader(3),
ConstantColorShader(0.3,0.3,0.3,1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,40 @@
#
# Filename : polygonalize.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Make the strokes more "polygonal"
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(2.0),
ConstantThicknessShader(3),
ConstantColorShader(0.0,0.0,0.0),
PolygonalizationShader(8)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,41 @@
#
# Filename : qi0.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the visible lines (chaining follows same nature lines)
# (most basic style module)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(5.0),
ConstantThicknessShader(4.0),
ConstantColorShader(0.0,0.0,0.0)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,43 @@
#
# Filename : qi0_not_external_contour.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the visible lines (chaining follows same nature lines)
# that do not belong to the external contour of the scene
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
SamplingShader(4),
SpatialNoiseShader(4, 150, 2, True, True),
IncreasingThicknessShader(2, 5),
BackboneStretcherShader(20),
IncreasingColorShader(1,0,0,1,0,1,0,1),
TextureAssignerShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,42 @@
#
# Filename : qi1.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws lines hidden by one surface.
# *** Quantitative Invisibility must have been
# enabled in the options dialog to use this style module ****
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(1))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(1)))
shaders_list = [
SamplingShader(5.0),
ConstantThicknessShader(3),
ConstantColorShader(0.5,0.5,0.5, 1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,42 @@
#
# Filename : qi2.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws lines hidden by two surfaces.
# *** Quantitative Invisibility must have been
# enabled in the options dialog to use this style module ****
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(2))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(2)))
shaders_list = [
SamplingShader(10),
ConstantThicknessShader(1.5),
ConstantColorShader(0.7,0.7,0.7, 1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,68 @@
#
# Filename : sequentialsplit_sketchy.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Use the sequential split with two different
# predicates to specify respectively the starting and
# the stopping extremities for strokes
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesU0D import *
from Functions0D import *
## Predicate to tell whether a TVertex
## corresponds to a change from 0 to 1 or not.
class pyBackTVertexUP0D(UnaryPredicate0D):
def __init__(self):
UnaryPredicate0D.__init__(self)
self._getQI = QuantitativeInvisibilityF0D()
def getName(self):
return "pyBackTVertexUP0D"
def __call__(self, iter):
v = iter.getObject()
nat = v.getNature()
if(nat & Nature.T_VERTEX == 0):
return 0
if(self._getQI(iter) != 0):
return 1
return 0
upred = QuantitativeInvisibilityUP1D(0)
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
## starting and stopping predicates:
start = pyVertexNatureUP0D(Nature.NON_T_VERTEX)
stop = pyBackTVertexUP0D()
Operators.sequentialSplit(start, stop, 10)
shaders_list = [
SpatialNoiseShader(7, 120, 2, True, True),
IncreasingThicknessShader(5, 8),
ConstantColorShader(0.2, 0.2, 0.2, 1),
TextureAssignerShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

File diff suppressed because it is too large Load Diff

@ -0,0 +1,48 @@
#
# Filename : sketchy_multiple_parameterization.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Builds sketchy strokes whose topology relies on a
# parameterization that covers the complete lines (visible+invisible)
# whereas only the visible portions are actually drawn
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
## 0: don't restrict to selection
Operators.bidirectionalChain(pySketchyChainSilhouetteIterator(3,0))
shaders_list = [
SamplingShader(2),
SpatialNoiseShader(15, 120, 2, 1, 1),
IncreasingThicknessShader(5, 30),
SmoothingShader(100, 0.05, 0, 0.2, 0, 0, 0, 1),
IncreasingColorShader(0,0.2,0,1,0.2,0.7,0.2,1),
TextureAssignerShader(6),
pyHLRShader()
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,89 @@
#
# Filename : sketchy_topology_broken.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The topology of the strokes is, first, built
# independantly from the 3D topology of objects,
# and, second, so as to chain several times the same ViewEdge.
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
## Backbone stretcher that leaves cusps intact to avoid cracks
class pyBackboneStretcherNoCuspShader(StrokeShader):
def __init__(self, l):
StrokeShader.__init__(self)
self._l = l
def getName(self):
return "pyBackboneStretcherNoCuspShader"
def shade(self, stroke):
it0 = stroke.strokeVerticesBegin()
it1 = StrokeVertexIterator(it0)
it1.increment()
itn = stroke.strokeVerticesEnd()
itn.decrement()
itn_1 = StrokeVertexIterator(itn)
itn_1.decrement()
v0 = it0.getObject()
v1 = it1.getObject()
if((v0.getNature() & Nature.CUSP == 0) and (v1.getNature() & Nature.CUSP == 0)):
p0 = v0.getPoint()
p1 = v1.getPoint()
d1 = p0-p1
d1.normalize()
newFirst = p0+d1*float(self._l)
v0.setPoint(newFirst)
else:
print "got a v0 cusp"
vn_1 = itn_1.getObject()
vn = itn.getObject()
if((vn.getNature() & Nature.CUSP == 0) and (vn_1.getNature() & Nature.CUSP == 0)):
pn = vn.getPoint()
pn_1 = vn_1.getPoint()
dn = pn-pn_1
dn.normalize()
newLast = pn+dn*float(self._l)
vn.setPoint(newLast)
else:
print "got a vn cusp"
Operators.select(QuantitativeInvisibilityUP1D(0))
## Chain 3 times each ViewEdge indpendantly from the
## initial objects topology
Operators.bidirectionalChain(pySketchyChainingIterator(3))
shaders_list = [
SamplingShader(4),
SpatialNoiseShader(6, 120, 2, 1, 1),
IncreasingThicknessShader(4, 10),
SmoothingShader(100, 0.1, 0, 0.2, 0, 0, 0, 1),
pyBackboneStretcherNoCuspShader(20),
#ConstantColorShader(0.0,0.0,0.0)
IncreasingColorShader(0.2,0.2,0.2,1,0.5,0.5,0.5,1),
#IncreasingColorShader(1,0,0,1,0,1,0,1),
TextureAssignerShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,49 @@
#
# Filename : sketchy_topology_preserved.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The topology of the strokes is built
# so as to chain several times the same ViewEdge.
# The topology of the objects is preserved
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from PredicatesU1D import *
from shaders import *
upred = QuantitativeInvisibilityUP1D(0)
Operators.select(upred)
Operators.bidirectionalChain(pySketchyChainSilhouetteIterator(3,1))
shaders_list = [
SamplingShader(4),
SpatialNoiseShader(20, 220, 2, 1, 1),
IncreasingThicknessShader(4, 8),
SmoothingShader(300, 0.05, 0, 0.2, 0, 0, 0, 0.5),
ConstantColorShader(0.6,0.2,0.0),
TextureAssignerShader(4),
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,41 @@
#
# Filename : split_at_highest_2d_curvature.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the visible lines (chaining follows same nature lines)
# (most basic style module)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesU0D import *
from PredicatesU1D import *
from Functions0D import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
func = pyInverseCurvature2DAngleF0D()
Operators.recursiveSplit(func, pyParameterUP0D(0.4,0.6), NotUP1D(pyHigherLengthUP1D(100)), 2)
shaders_list = [ConstantThicknessShader(10), IncreasingColorShader(1,0,0,1,0,1,0,1), TextureAssignerShader(3)]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,42 @@
#
# Filename : split_at_tvertices.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws strokes that starts and stops at Tvertices (visible or not)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesU0D import *
from Functions0D import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
start = pyVertexNatureUP0D(Nature.T_VERTEX)
## use the same predicate to decide where to start and where to stop
## the strokes:
Operators.sequentialSplit(start, start, 10)
shaders_list = [ConstantThicknessShader(5), IncreasingColorShader(1,0,0,1,0,1,0,1), TextureAssignerShader(3)]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,43 @@
#
# Filename : stroke_texture.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws textured strokes (illustrate the StrokeTextureShader shader)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
from ChainingIterators import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(3),
BezierCurveShader(4),
StrokeTextureShader("washbrushAlpha.bmp", Stroke.DRY_MEDIUM, 1),
ConstantThicknessShader(40),
ConstantColorShader(0,0,0,1),
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,43 @@
#
# Filename : suggestive.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the suggestive contours.
# ***** The suggestive contours must be enabled
# in the options dialog *****
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(pyNatureUP1D(Nature.SUGGESTIVE_CONTOUR), QuantitativeInvisibilityUP1D(0))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
IncreasingThicknessShader(1, 3),
ConstantColorShader(0.2,0.2,0.2, 1)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,62 @@
#
# Filename : thickness_fof_depth_discontinuity.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Assigns to strokes a thickness that depends on the depth discontinuity
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
class pyDepthDiscontinuityThicknessShader(StrokeShader):
def __init__(self, min, max):
StrokeShader.__init__(self)
self.__min = float(min)
self.__max = float(max)
self.__func = ZDiscontinuityF0D()
def getName(self):
return "pyDepthDiscontinuityThicknessShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
z_min=0.0
z_max=1.0
a = (self.__max - self.__min)/(z_max-z_min)
b = (self.__min*z_max-self.__max*z_min)/(z_max-z_min)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
z = self.__func(it.castToInterface0DIterator())
thickness = a*z+b
it.getObject().attribute().setThickness(thickness, thickness)
it.increment()
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(1),
ConstantThicknessShader(3),
ConstantColorShader(0.0,0.0,0.0),
pyDepthDiscontinuityThicknessShader(0.8, 6)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,42 @@
#
# Filename : tipremover.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Removes strokes extremities
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(5),
ConstantThicknessShader(3),
ConstantColorShader(0,0,0),
TipRemoverShader(20)
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,42 @@
#
# Filename : tvertex_remover.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Removes TVertices
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
IncreasingThicknessShader(3, 5),
ConstantColorShader(0.2,0.2,0.2, 1),
SamplingShader(10.0),
pyTVertexRemoverShader()
]
Operators.create(TrueUP1D(), shaders_list)

@ -0,0 +1,40 @@
from freestyle_init import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesU0D import *
from PredicatesB1D import *
from Functions0D import *
from Functions1D import *
from shaders import *
class pyDensityUP1D(UnaryPredicate1D):
def __init__(self,wsize,threshold, integration = IntegrationType.MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = threshold
self._integration = integration
self._func = DensityF1D(self._wsize, self._integration, sampling)
def getName(self):
return "pyDensityUP1D"
def __call__(self, inter):
d = self._func(inter)
print "For Chain ", inter.getId().getFirst(), inter.getId().getSecond(), "density is ", d
if(d < self._threshold):
return 1
return 0
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator())
#Operators.sequentialSplit(pyVertexNatureUP0D(Nature.VIEW_VERTEX), 2)
Operators.sort(pyZBP1D())
shaders_list = [
StrokeTextureShader("smoothAlpha.bmp", Stroke.OPAQUE_MEDIUM, 0),
ConstantThicknessShader(3),
SamplingShader(5.0),
ConstantColorShader(0,0,0,1)
]
Operators.create(pyDensityUP1D(2,0.05, IntegrationType.MEAN,4), shaders_list)
#Operators.create(pyDensityFunctorUP1D(8,0.03, pyGetInverseProjectedZF1D(), 0,1, IntegrationType.MEAN), shaders_list)

@ -0,0 +1,241 @@
# This module defines 3d geometrical vectors with the standard
# operations on them.
#
# Written by: Konrad Hinsen
# Last revision: 1996-1-26
#
"""This module defines three-dimensional geometrical vectors. Vectors support
the usual mathematical operations (v1, v2: vectors, s: scalar):
v1+v2 addition
v1-v2 subtraction
v1*v2 scalar product
s*v1 multiplication with a scalar
v1/s division by a scalar
v1.cross(v2) cross product
v1.length() length
v1.normal() normal vector in direction of v1
v1.angle(v2) angle between two vectors
v1.x(), v1[0] first element
v1.y(), v1[1] second element
v1.z(), v1[2] third element
The module offers the following items for export:
Vec3D(x,y,z) the constructor for vectors
isVector(x) a type check function
ex, ey, ez unit vectors along the x-, y-, and z-axes (predefined constants)
Note: vector elements can be any kind of numbers on which the operations
addition, subtraction, multiplication, division, comparison, sqrt, and acos
are defined. Integer elements are treated as floating point elements.
"""
import math, types
class Vec3:
isVec3 = 1
def __init__(self, x=0., y=0., z=0.):
self.data = [x,y,z]
def __repr__(self):
return 'Vec3(%s,%s,%s)' % (`self.data[0]`,\
`self.data[1]`,`self.data[2]`)
def __str__(self):
return `self.data`
def __add__(self, other):
return Vec3(self.data[0]+other.data[0],\
self.data[1]+other.data[1],self.data[2]+other.data[2])
__radd__ = __add__
def __neg__(self):
return Vec3(-self.data[0], -self.data[1], -self.data[2])
def __sub__(self, other):
return Vec3(self.data[0]-other.data[0],\
self.data[1]-other.data[1],self.data[2]-other.data[2])
def __rsub__(self, other):
return Vec3(other.data[0]-self.data[0],\
other.data[1]-self.data[1],other.data[2]-self.data[2])
def __mul__(self, other):
if isVec3(other):
return reduce(lambda a,b: a+b,
map(lambda a,b: a*b, self.data, other.data))
else:
return Vec3(self.data[0]*other, self.data[1]*other,
self.data[2]*other)
def __rmul__(self, other):
if isVec3(other):
return reduce(lambda a,b: a+b,
map(lambda a,b: a*b, self.data, other.data))
else:
return Vec3(other*self.data[0], other*self.data[1],
other*self.data[2])
def __div__(self, other):
if isVec3(other):
raise TypeError, "Can't divide by a vector"
else:
return Vec3(_div(self.data[0],other), _div(self.data[1],other),
_div(self.data[2],other))
def __rdiv__(self, other):
raise TypeError, "Can't divide by a vector"
def __cmp__(self, other):
return cmp(self.data[0],other.data[0]) \
or cmp(self.data[1],other.data[1]) \
or cmp(self.data[2],other.data[2])
def __getitem__(self, index):
return self.data[index]
def x(self):
return self.data[0]
def y(self):
return self.data[1]
def z(self):
return self.data[2]
def length(self):
return math.sqrt(self*self)
def normal(self):
len = self.length()
if len == 0:
raise ZeroDivisionError, "Can't normalize a zero-length vector"
return self/len
def cross(self, other):
if not isVec3(other):
raise TypeError, "Cross product with non-vector"
return Vec3(self.data[1]*other.data[2]-self.data[2]*other.data[1],
self.data[2]*other.data[0]-self.data[0]*other.data[2],
self.data[0]*other.data[1]-self.data[1]*other.data[0])
def angle(self, other):
if not isVec3(other):
raise TypeError, "Angle between vector and non-vector"
cosa = (self*other)/(self.length()*other.length())
cosa = max(-1.,min(1.,cosa))
return math.acos(cosa)
class Vec2:
isVec2 = 1
def __init__(self, x=0., y=0.):
self.data = [x,y]
def __repr__(self):
return 'Vec2(%s,%s,%s)' % (`self.data[0]`,\
`self.data[1]`)
def __str__(self):
return `self.data`
def __add__(self, other):
return Vec2(self.data[0]+other.data[0],\
self.data[1]+other.data[1])
__radd__ = __add__
def __neg__(self):
return Vec2(-self.data[0], -self.data[1])
def __sub__(self, other):
return Vec2(self.data[0]-other.data[0],\
self.data[1]-other.data[1])
def __rsub__(self, other):
return Vec2(other.data[0]-self.data[0],\
other.data[1]-self.data[1])
def __mul__(self, other):
if isVec2(other):
return reduce(lambda a,b: a+b,
map(lambda a,b: a*b, self.data, other.data))
else:
return Vec2(self.data[0]*other, self.data[1]*other)
def __rmul__(self, other):
if isVec2(other):
return reduce(lambda a,b: a+b,
map(lambda a,b: a*b, self.data, other.data))
else:
return Vec2(other*self.data[0], other*self.data[1])
def __div__(self, other):
if isVec2(other):
raise TypeError, "Can't divide by a vector"
else:
return Vec2(_div(self.data[0],other), _div(self.data[1],other))
def __rdiv__(self, other):
raise TypeError, "Can't divide by a vector"
def __cmp__(self, other):
return cmp(self.data[0],other.data[0]) \
or cmp(self.data[1],other.data[1])
def __getitem__(self, index):
return self.data[index]
def x(self):
return self.data[0]
def y(self):
return self.data[1]
def length(self):
return math.sqrt(self*self)
def normal(self):
len = self.length()
if len == 0:
raise ZeroDivisionError, "Can't normalize a zero-length vector"
return self/len
#def cross(self, other):
# if not isVec2(other):
# raise TypeError, "Cross product with non-vector"
# return Vec2(self.data[1]*other.data[2]-self.data[2]*other.data[1],
# self.data[2]*other.data[0]-self.data[0]*other.data[2],
# self.data[0]*other.data[1]-self.data[1]*other.data[0])
def angle(self, other):
if not isVec2(other):
raise TypeError, "Angle between vector and non-vector"
cosa = (self*other)/(self.length()*other.length())
cosa = max(-1.,min(1.,cosa))
return math.acos(cosa)
# Type check
def isVec3(x):
return hasattr(x,'isVec3')
def isVec2(x):
return hasattr(x,'isVec2')
# "Correct" division for arbitrary number types
def _div(a,b):
if type(a) == types.IntType and type(b) == types.IntType:
return float(a)/float(b)
else:
return a/b
# Some useful constants
ex = Vec3(1.,0.,0.)
ey = Vec3(0.,1.,0.)
ez = Vec3(0.,0.,1.)