added RecastNavigation library as extern project

This commit is contained in:
Nick Samarin 2010-05-19 01:01:21 +00:00
parent 102105ef27
commit 34058faa0e
32 changed files with 11573 additions and 0 deletions

@ -0,0 +1,167 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURCOMMON_H
#define DETOURCOMMON_H
//////////////////////////////////////////////////////////////////////////////////////////
template<class T> inline void swap(T& a, T& b) { T t = a; a = b; b = t; }
template<class T> inline T min(T a, T b) { return a < b ? a : b; }
template<class T> inline T max(T a, T b) { return a > b ? a : b; }
template<class T> inline T abs(T a) { return a < 0 ? -a : a; }
template<class T> inline T sqr(T a) { return a*a; }
template<class T> inline T clamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
inline void vcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
inline float vdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
inline void vmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
inline void vadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
inline void vsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
inline void vmin(float* mn, const float* v)
{
mn[0] = min(mn[0], v[0]);
mn[1] = min(mn[1], v[1]);
mn[2] = min(mn[2], v[2]);
}
inline void vmax(float* mx, const float* v)
{
mx[0] = max(mx[0], v[0]);
mx[1] = max(mx[1], v[1]);
mx[2] = max(mx[2], v[2]);
}
inline void vcopy(float* dest, const float* a)
{
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
inline float vdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return sqrtf(dx*dx + dy*dy + dz*dz);
}
inline float vdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
inline void vnormalize(float* v)
{
float d = 1.0f / sqrtf(sqr(v[0]) + sqr(v[1]) + sqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
inline bool vequal(const float* p0, const float* p1)
{
static const float thr = sqr(1.0f/16384.0f);
const float d = vdistSqr(p0, p1);
return d < thr;
}
inline int nextPow2(int v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
inline float vdot2D(const float* u, const float* v)
{
return u[0]*v[0] + u[2]*v[2];
}
inline float vperp2D(const float* u, const float* v)
{
return u[2]*v[0] - u[0]*v[2];
}
inline float triArea2D(const float* a, const float* b, const float* c)
{
return ((b[0]*a[2] - a[0]*b[2]) + (c[0]*b[2] - b[0]*c[2]) + (a[0]*c[2] - c[0]*a[2])) * 0.5f;
}
inline bool checkOverlapBox(const unsigned short amin[3], const unsigned short amax[3],
const unsigned short bmin[3], const unsigned short bmax[3])
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
return overlap;
}
void closestPtPointTriangle(float* closest, const float* p,
const float* a, const float* b, const float* c);
bool closestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
bool intersectSegmentPoly2D(const float* p0, const float* p1,
const float* verts, int nverts,
float& tmin, float& tmax,
int& segMin, int& segMax);
float distancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
void calcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
#endif // DETOURCOMMON_H

@ -0,0 +1,32 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURDEBUGDRAW_H
#define DETOURDEBUGDRAW_H
#include "DetourStatNavMesh.h"
#include "DetourTileNavMesh.h"
void dtDebugDrawStatNavMeshPoly(const dtStatNavMesh* mesh, dtStatPolyRef ref, const float* col);
void dtDebugDrawStatNavMeshBVTree(const dtStatNavMesh* mesh);
void dtDebugDrawStatNavMesh(const dtStatNavMesh* mesh, bool drawClosedList = false);
void dtDebugDrawTiledNavMesh(const dtTiledNavMesh* mesh);
void dtDebugDrawTiledNavMeshPoly(const dtTiledNavMesh* mesh, dtTilePolyRef ref, const float* col);
#endif // DETOURDEBUGDRAW_H

@ -0,0 +1,149 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURNODE_H
#define DETOURNODE_H
enum dtNodeFlags
{
DT_NODE_OPEN = 0x01,
DT_NODE_CLOSED = 0x02,
};
struct dtNode
{
float cost;
float total;
unsigned int id;
unsigned int pidx : 30;
unsigned int flags : 2;
};
class dtNodePool
{
public:
dtNodePool(int maxNodes, int hashSize);
~dtNodePool();
inline void operator=(const dtNodePool&) {}
void clear();
dtNode* getNode(unsigned int id);
const dtNode* findNode(unsigned int id) const;
inline unsigned int getNodeIdx(const dtNode* node) const
{
if (!node) return 0;
return (unsigned int)(node - m_nodes)+1;
}
inline dtNode* getNodeAtIdx(unsigned int idx)
{
if (!idx) return 0;
return &m_nodes[idx-1];
}
inline int getMemUsed() const
{
return sizeof(*this) +
sizeof(dtNode)*m_maxNodes +
sizeof(unsigned short)*m_maxNodes +
sizeof(unsigned short)*m_hashSize;
}
private:
inline unsigned int hashint(unsigned int a) const
{
a += ~(a<<15);
a ^= (a>>10);
a += (a<<3);
a ^= (a>>6);
a += ~(a<<11);
a ^= (a>>16);
return a;
}
dtNode* m_nodes;
unsigned short* m_first;
unsigned short* m_next;
const int m_maxNodes;
const int m_hashSize;
int m_nodeCount;
};
class dtNodeQueue
{
public:
dtNodeQueue(int n);
~dtNodeQueue();
inline void operator=(dtNodeQueue&) {}
inline void clear()
{
m_size = 0;
}
inline dtNode* top()
{
return m_heap[0];
}
inline dtNode* pop()
{
dtNode* result = m_heap[0];
m_size--;
trickleDown(0, m_heap[m_size]);
return result;
}
inline void push(dtNode* node)
{
m_size++;
bubbleUp(m_size-1, node);
}
inline void modify(dtNode* node)
{
for (int i = 0; i < m_size; ++i)
{
if (m_heap[i] == node)
{
bubbleUp(i, node);
return;
}
}
}
inline bool empty() const { return m_size == 0; }
inline int getMemUsed() const
{
return sizeof(*this) +
sizeof(dtNode*)*(m_capacity+1);
}
private:
void bubbleUp(int i, dtNode* node);
void trickleDown(int i, dtNode* node);
dtNode** m_heap;
const int m_capacity;
int m_size;
};
#endif // DETOURNODE_H

@ -0,0 +1,234 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURSTATNAVMESH_H
#define DETOURSTATNAVMESH_H
// Reference to navigation polygon.
typedef unsigned short dtStatPolyRef;
// Maximum number of vertices per navigation polygon.
static const int DT_STAT_VERTS_PER_POLYGON = 6;
// Structure holding the navigation polygon data.
struct dtStatPoly
{
unsigned short v[DT_STAT_VERTS_PER_POLYGON]; // Indices to vertices of the poly.
dtStatPolyRef n[DT_STAT_VERTS_PER_POLYGON]; // Refs to neighbours of the poly.
unsigned char nv; // Number of vertices.
unsigned char flags; // Flags (not used).
};
struct dtStatPolyDetail
{
unsigned short vbase; // Offset to detail vertex array.
unsigned short nverts; // Number of vertices in the detail mesh.
unsigned short tbase; // Offset to detail triangle array.
unsigned short ntris; // Number of triangles.
};
const int DT_STAT_NAVMESH_MAGIC = 'NAVM';
const int DT_STAT_NAVMESH_VERSION = 3;
struct dtStatBVNode
{
unsigned short bmin[3], bmax[3];
int i;
};
struct dtStatNavMeshHeader
{
int magic;
int version;
int npolys;
int nverts;
int nnodes;
int ndmeshes;
int ndverts;
int ndtris;
float cs;
float bmin[3], bmax[3];
dtStatPoly* polys;
float* verts;
dtStatBVNode* bvtree;
dtStatPolyDetail* dmeshes;
float* dverts;
unsigned char* dtris;
};
class dtStatNavMesh
{
public:
dtStatNavMesh();
~dtStatNavMesh();
// Initializes the navmesh with data.
// Params:
// data - (in) Pointer to navmesh data.
// dataSize - (in) size of the navmesh data.
// ownsData - (in) Flag indicating if the navmesh should own and delete the data.
bool init(unsigned char* data, int dataSize, bool ownsData);
// Finds the nearest navigation polygon around the center location.
// Params:
// center - (in) The center of the search box.
// extents - (in) The extents of the search box.
// Returns: Reference identifier for the polygon, or 0 if no polygons found.
dtStatPolyRef findNearestPoly(const float* center, const float* extents);
// Returns polygons which touch the query box.
// Params:
// center - (in) the center of the search box.
// extents - (in) the extents of the search box.
// polys - (out) array holding the search result.
// maxPolys - (in) The max number of polygons the polys array can hold.
// Returns: Number of polygons in search result array.
int queryPolygons(const float* center, const float* extents,
dtStatPolyRef* polys, const int maxPolys);
// Finds path from start polygon to end polygon.
// If target polygon canno be reached through the navigation graph,
// the last node on the array is nearest node to the end polygon.
// Params:
// startRef - (in) ref to path start polygon.
// endRef - (in) ref to path end polygon.
// path - (out) array holding the search result.
// maxPathSize - (in) The max number of polygons the path array can hold.
// Returns: Number of polygons in search result array.
int findPath(dtStatPolyRef startRef, dtStatPolyRef endRef,
const float* startPos, const float* endPos,
dtStatPolyRef* path, const int maxPathSize);
// Finds a straight path from start to end locations within the corridor
// described by the path polygons.
// Start and end locations will be clamped on the corridor.
// Params:
// startPos - (in) Path start location.
// endPos - (in) Path end location.
// path - (in) Array of connected polygons describing the corridor.
// pathSize - (in) Number of polygons in path array.
// straightPath - (out) Points describing the straight path.
// maxStraightPathSize - (in) The max number of points the straight path array can hold.
// Returns: Number of points in the path.
int findStraightPath(const float* startPos, const float* endPos,
const dtStatPolyRef* path, const int pathSize,
float* straightPath, const int maxStraightPathSize);
// Finds intersection againts walls starting from start pos.
// Params:
// startRef - (in) ref to the polygon where the start lies.
// startPos - (in) start position of the query.
// endPos - (in) end position of the query.
// t - (out) hit parameter along the segment, 0 if no hit.
// endRef - (out) ref to the last polygon which was processed.
// Returns: Number of polygons in path or 0 if failed.
int raycast(dtStatPolyRef startRef, const float* startPos, const float* endPos,
float& t, dtStatPolyRef* path, const int pathSize);
// Returns distance to nearest wall from the specified location.
// Params:
// centerRef - (in) ref to the polygon where the center lies.
// centerPos - (in) center if the query circle.
// maxRadius - (in) max search radius.
// hitPos - (out) location of the nearest hit.
// hitNormal - (out) normal of the nearest hit.
// Returns: Distance to nearest wall from the test location.
float findDistanceToWall(dtStatPolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal);
// Finds polygons found along the navigation graph which touch the specified circle.
// Params:
// centerRef - (in) ref to the polygon where the center lies.
// centerPos - (in) center if the query circle
// radius - (in) radius of the query circle
// resultRef - (out, opt) refs to the polygons touched by the circle.
// resultParent - (out, opt) parent of each result polygon.
// resultCost - (out, opt) search cost at each result polygon.
// maxResult - (int) maximum capacity of search results.
// Returns: Number of results.
int findPolysAround(dtStatPolyRef centerRef, const float* centerPos, float radius,
dtStatPolyRef* resultRef, dtStatPolyRef* resultParent, float* resultCost,
const int maxResult);
// Returns closest point on navigation polygon.
// Params:
// ref - (in) ref to the polygon.
// pos - (in) the point to check.
// closest - (out) closest point.
// Returns: true if closest point found.
bool closestPointToPoly(dtStatPolyRef ref, const float* pos, float* closest) const;
// Returns height of the polygon at specified location.
// Params:
// ref - (in) ref to the polygon.
// pos - (in) the point where to locate the height.
// height - (out) height at the location.
// Returns: true if oer polygon.
bool getPolyHeight(dtStatPolyRef ref, const float* pos, float* height) const;
// Returns pointer to a polygon based on ref.
const dtStatPoly* getPolyByRef(dtStatPolyRef ref) const;
// Returns polygon index based on ref, or -1 if failed.
int getPolyIndexByRef(dtStatPolyRef ref) const;
// Returns number of navigation polygons.
inline int getPolyCount() const { return m_header ? m_header->npolys : 0; }
// Rerturns pointer to specified navigation polygon.
inline const dtStatPoly* getPoly(int i) const { return &m_header->polys[i]; }
// Returns number of vertices.
inline int getVertexCount() const { return m_header ? m_header->nverts : 0; }
// Returns pointer to specified vertex.
inline const float* getVertex(int i) const { return &m_header->verts[i*3]; }
// Returns number of navigation polygons details.
inline int getPolyDetailCount() const { return m_header ? m_header->ndmeshes : 0; }
// Rerturns pointer to specified navigation polygon detail.
const dtStatPolyDetail* getPolyDetail(int i) const { return &m_header->dmeshes[i]; }
// Returns pointer to specified vertex.
inline const float* getDetailVertex(int i) const { return &m_header->dverts[i*3]; }
// Returns pointer to specified vertex.
inline const unsigned char* getDetailTri(int i) const { return &m_header->dtris[i*4]; }
bool isInClosedList(dtStatPolyRef ref) const;
int getMemUsed() const;
inline unsigned char* getData() const { return m_data; }
inline int getDataSize() const { return m_dataSize; }
inline const dtStatNavMeshHeader* getHeader() const { return m_header; }
inline const dtStatBVNode* getBvTreeNodes() const { return m_header ? m_header->bvtree : 0; }
inline int getBvTreeNodeCount() const { return m_header ? m_header->nnodes : 0; }
private:
// Copies the locations of vertices of a polygon to an array.
int getPolyVerts(dtStatPolyRef ref, float* verts) const;
// Returns portal points between two polygons.
bool getPortalPoints(dtStatPolyRef from, dtStatPolyRef to, float* left, float* right) const;
// Returns edge mid point between two polygons.
bool getEdgeMidPoint(dtStatPolyRef from, dtStatPolyRef to, float* mid) const;
unsigned char* m_data;
int m_dataSize;
dtStatNavMeshHeader* m_header;
class dtNodePool* m_nodePool;
class dtNodeQueue* m_openList;
};
#endif // DETOURSTATNAVMESH_H

@ -0,0 +1,29 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURSTATNAVMESHBUILDER_H
#define DETOURSTATNAVMESHBUILDER_H
bool dtCreateNavMeshData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const float* bmin, const float* bmax, float cs, float ch,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
unsigned char** outData, int* outDataSize);
#endif // DETOURSTATNAVMESHBUILDER_H

@ -0,0 +1,315 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURTILENAVMESH_H
#define DETOURTILENAVMESH_H
// Reference to navigation polygon.
typedef unsigned int dtTilePolyRef;
// The bits used in the poly ref.
static const int DT_TILE_REF_SALT_BITS = 12;
static const int DT_TILE_REF_TILE_BITS = 12;
static const int DT_TILE_REF_POLY_BITS = 8;
static const int DT_TILE_REF_SALT_MASK = (1<<DT_TILE_REF_SALT_BITS)-1;
static const int DT_TILE_REF_TILE_MASK = (1<<DT_TILE_REF_TILE_BITS)-1;
static const int DT_TILE_REF_POLY_MASK = (1<<DT_TILE_REF_POLY_BITS)-1;
// Maximum number of vertices per navigation polygon.
static const int DT_TILE_VERTS_PER_POLYGON = 6;
static const int DT_MAX_TILES = 1 << DT_TILE_REF_TILE_BITS;
static const int DT_MAX_POLYGONS = 1 << DT_TILE_REF_POLY_BITS;
static const int DT_TILE_NAVMESH_MAGIC = 'NAVT';
static const int DT_TILE_NAVMESH_VERSION = 2;
// Structure holding the navigation polygon data.
struct dtTilePoly
{
unsigned short v[DT_TILE_VERTS_PER_POLYGON]; // Indices to vertices of the poly.
unsigned short n[DT_TILE_VERTS_PER_POLYGON]; // Refs to neighbours of the poly.
unsigned short links; // Base index to header 'links' array.
unsigned char nlinks; // Number of links for
unsigned char nv; // Number of vertices.
unsigned char flags; // Flags (not used).
};
struct dtTilePolyDetail
{
unsigned short vbase; // Offset to detail vertex array.
unsigned short nverts; // Number of vertices in the detail mesh.
unsigned short tbase; // Offset to detail triangle array.
unsigned short ntris; // Number of triangles.
};
// Stucture holding a link to another polygon.
struct dtTileLink
{
dtTilePolyRef ref; // Neighbour reference.
unsigned short p; // Index to polygon which owns this link.
unsigned char e; // Index to polygon edge which owns this link.
unsigned char side; // If boundary link, defines on which side the link is.
unsigned char bmin, bmax; // If boundary link, defines the sub edge area.
};
struct dtTileHeader
{
int magic; // Magic number, used to identify the data.
int version; // Data version number.
int npolys; // Number of polygons in the tile.
int nverts; // Number of vertices in the tile.
int nlinks; // Number of links in the tile (will be updated when tile is added).
int maxlinks; // Number of allocated links.
int ndmeshes;
int ndverts;
int ndtris;
float bmin[3], bmax[3]; // Bounding box of the tile.
dtTilePoly* polys; // Pointer to the polygons (will be updated when tile is added).
float* verts; // Pointer to the vertices (will be updated when tile added).
dtTileLink* links; // Pointer to the links (will be updated when tile added).
dtTilePolyDetail* dmeshes;
float* dverts;
unsigned char* dtris;
};
struct dtTile
{
int salt; // Counter describing modifications to the tile.
int x,y; // Grid location of the tile.
dtTileHeader* header; // Pointer to tile header.
unsigned char* data; // Pointer to tile data.
int dataSize; // Size of the tile data.
bool ownsData; // Flag indicating of the navmesh should release the data.
dtTile* next; // Next free tile or, next tile in spatial grid.
};
// Encodes a tile id.
inline dtTilePolyRef dtEncodeTileId(unsigned int salt, unsigned int it, unsigned int ip)
{
return (salt << (DT_TILE_REF_POLY_BITS+DT_TILE_REF_TILE_BITS)) | ((it+1) << DT_TILE_REF_POLY_BITS) | ip;
}
// Decodes a tile id.
inline void dtDecodeTileId(dtTilePolyRef ref, unsigned int& salt, unsigned int& it, unsigned int& ip)
{
salt = (ref >> (DT_TILE_REF_POLY_BITS+DT_TILE_REF_TILE_BITS)) & DT_TILE_REF_SALT_MASK;
it = ((ref >> DT_TILE_REF_POLY_BITS) & DT_TILE_REF_TILE_MASK) - 1;
ip = ref & DT_TILE_REF_POLY_MASK;
}
static const int DT_TILE_LOOKUP_SIZE = DT_MAX_TILES/4;
class dtTiledNavMesh
{
public:
dtTiledNavMesh();
~dtTiledNavMesh();
// Initializes the nav mesh.
// Params:
// orig - (in) origin of the nav mesh tile space.
// tileSiz - (in) size of a tile.
// portalheight - (in) height of the portal region between tiles.
// Returns: True if succeed, else false.
bool init(const float* orig, float tileSize, float portalHeight);
// Adds new tile into the navmesh.
// The add will fail if the data is in wrong format,
// there is not enough tiles left, or if there is a tile already at the location.
// Params:
// x,y - (in) Location of the new tile.
// data - (in) Data of the new tile mesh.
// dataSize - (in) Data size of the new tile mesh.
// ownsData - (in) Flag indicating if the navmesh should own and delete the data.
// Returns: True if tile was added, else false.
bool addTileAt(int x, int y, unsigned char* data, int dataSize, bool ownsData);
// Removes tile at specified location.
// Params:
// x,y - (in) Location of the tile to remove.
// data - (out) Data associated with deleted tile.
// dataSize - (out) Size of the data associated with deleted tile.
// Returns: True if remove suceed, else false.
bool removeTileAt(int x, int y, unsigned char** data, int* dataSize);
// Returns pointer to tile at specified location.
// Params:
// x,y - (in) Location of the tile to get.
// Returns: pointer to tile if tile exists or 0 tile does not exists.
dtTile* getTileAt(int x, int y);
// Returns pointer to tile in the tile array.
// Params:
// i - (in) Index to the tile to retrieve, must be in range [0,DT_MAX_TILES[
// Returns: Pointer to specified tile.
dtTile* getTile(int i);
const dtTile* getTile(int i) const;
// Finds the nearest navigation polygon around the center location.
// Params:
// center - (in) The center of the search box.
// extents - (in) The extents of the search box.
// Returns: Reference identifier for the polygon, or 0 if no polygons found.
dtTilePolyRef findNearestPoly(const float* center, const float* extents);
// Returns polygons which touch the query box.
// Params:
// center - (in) the center of the search box.
// extents - (in) the extents of the search box.
// polys - (out) array holding the search result.
// maxPolys - (in) The max number of polygons the polys array can hold.
// Returns: Number of polygons in search result array.
int queryPolygons(const float* center, const float* extents,
dtTilePolyRef* polys, const int maxPolys);
// Finds path from start polygon to end polygon.
// If target polygon canno be reached through the navigation graph,
// the last node on the array is nearest node to the end polygon.
// Params:
// startRef - (in) ref to path start polygon.
// endRef - (in) ref to path end polygon.
// path - (out) array holding the search result.
// maxPathSize - (in) The max number of polygons the path array can hold.
// Returns: Number of polygons in search result array.
int findPath(dtTilePolyRef startRef, dtTilePolyRef endRef,
const float* startPos, const float* endPos,
dtTilePolyRef* path, const int maxPathSize);
// Finds a straight path from start to end locations within the corridor
// described by the path polygons.
// Start and end locations will be clamped on the corridor.
// Params:
// startPos - (in) Path start location.
// endPos - (in) Path end location.
// path - (in) Array of connected polygons describing the corridor.
// pathSize - (in) Number of polygons in path array.
// straightPath - (out) Points describing the straight path.
// maxStraightPathSize - (in) The max number of points the straight path array can hold.
// Returns: Number of points in the path.
int findStraightPath(const float* startPos, const float* endPos,
const dtTilePolyRef* path, const int pathSize,
float* straightPath, const int maxStraightPathSize);
// Finds intersection againts walls starting from start pos.
// Params:
// startRef - (in) ref to the polygon where the start lies.
// startPos - (in) start position of the query.
// endPos - (in) end position of the query.
// t - (out) hit parameter along the segment, 0 if no hit.
// endRef - (out) ref to the last polygon which was processed.
// Returns: Number of polygons in path or 0 if failed.
int raycast(dtTilePolyRef startRef, const float* startPos, const float* endPos,
float& t, dtTilePolyRef* path, const int pathSize);
// Returns distance to nearest wall from the specified location.
// Params:
// centerRef - (in) ref to the polygon where the center lies.
// centerPos - (in) center if the query circle.
// maxRadius - (in) max search radius.
// hitPos - (out) location of the nearest hit.
// hitNormal - (out) normal of the nearest hit.
// Returns: Distance to nearest wall from the test location.
float findDistanceToWall(dtTilePolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal);
// Finds polygons found along the navigation graph which touch the specified circle.
// Params:
// centerRef - (in) ref to the polygon where the center lies.
// centerPos - (in) center if the query circle
// radius - (in) radius of the query circle
// resultRef - (out, opt) refs to the polygons touched by the circle.
// resultParent - (out, opt) parent of each result polygon.
// resultCost - (out, opt) search cost at each result polygon.
// maxResult - (int) maximum capacity of search results.
// Returns: Number of results.
int findPolysAround(dtTilePolyRef centerRef, const float* centerPos, float radius,
dtTilePolyRef* resultRef, dtTilePolyRef* resultParent, float* resultCost,
const int maxResult);
// Returns closest point on navigation polygon.
// Params:
// ref - (in) ref to the polygon.
// pos - (in) the point to check.
// closest - (out) closest point.
// Returns: true if closest point found.
bool closestPointToPoly(dtTilePolyRef ref, const float* pos, float* closest) const;
// Returns height of the polygon at specified location.
// Params:
// ref - (in) ref to the polygon.
// pos - (in) the point where to locate the height.
// height - (out) height at the location.
// Returns: true if over polygon.
bool getPolyHeight(dtTilePolyRef ref, const float* pos, float* height) const;
// Returns pointer to a polygon based on ref.
const dtTilePoly* getPolyByRef(dtTilePolyRef ref) const;
// Returns pointer to a polygon vertices based on ref.
const float* getPolyVertsByRef(dtTilePolyRef ref) const;
// Returns pointer to a polygon link based on ref.
const dtTileLink* getPolyLinksByRef(dtTilePolyRef ref) const;
private:
// Returns base id for the tile.
dtTilePolyRef getTileId(dtTile* tile);
// Returns neighbour tile based on side.
dtTile* getNeighbourTileAt(int x, int y, int side);
// Returns all polygons in neighbour tile based on portal defined by the segment.
int findConnectingPolys(const float* va, const float* vb,
dtTile* tile, int side,
dtTilePolyRef* con, float* conarea, int maxcon);
// Builds internal polygons links for a tile.
void buildIntLinks(dtTile* tile);
// Builds external polygon links for a tile.
void buildExtLinks(dtTile* tile, dtTile* target, int side);
// Removes external links at specified side.
void removeExtLinks(dtTile* tile, int side);
// Queries polygons within a tile.
int queryTilePolygons(dtTile* tile, const float* qmin, const float* qmax,
dtTilePolyRef* polys, const int maxPolys);
float getCost(dtTilePolyRef prev, dtTilePolyRef from, dtTilePolyRef to) const;
float getFirstCost(const float* pos, dtTilePolyRef from, dtTilePolyRef to) const;
float getLastCost(dtTilePolyRef from, dtTilePolyRef to, const float* pos) const;
float getHeuristic(const float* from, const float* to) const;
// Returns portal points between two polygons.
bool getPortalPoints(dtTilePolyRef from, dtTilePolyRef to, float* left, float* right) const;
// Returns edge mid point between two polygons.
bool getEdgeMidPoint(dtTilePolyRef from, dtTilePolyRef to, float* mid) const;
float m_orig[3];
float m_tileSize;
float m_portalHeight;
dtTile* m_posLookup[DT_TILE_LOOKUP_SIZE];
dtTile* m_nextFree;
dtTile m_tiles[DT_MAX_TILES];
dtTileLink* m_tmpLinks;
int m_ntmpLinks;
class dtNodePool* m_nodePool;
class dtNodeQueue* m_openList;
};
#endif // DETOURTILENAVMESH_H

@ -0,0 +1,29 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURTILEDNAVMESHBUILDER_H
#define DETOURTILEDNAVMESHBUILDER_H
bool dtCreateNavMeshTileData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
const float* bmin, const float* bmax, float cs, float ch, int tileSize, int walkableClimb,
unsigned char** outData, int* outDataSize);
#endif // DETOURTILEDNAVMESHBUILDER_H

@ -0,0 +1,244 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include "DetourCommon.h"
void closestPtPointTriangle(float* closest, const float* p,
const float* a, const float* b, const float* c)
{
// Check if P in vertex region outside A
float ab[3], ac[3], ap[3];
vsub(ab, b, a);
vsub(ac, c, a);
vsub(ap, p, a);
float d1 = vdot(ab, ap);
float d2 = vdot(ac, ap);
if (d1 <= 0.0f && d2 <= 0.0f)
{
// barycentric coordinates (1,0,0)
vcopy(closest, a);
return;
}
// Check if P in vertex region outside B
float bp[3];
vsub(bp, p, b);
float d3 = vdot(ab, bp);
float d4 = vdot(ac, bp);
if (d3 >= 0.0f && d4 <= d3)
{
// barycentric coordinates (0,1,0)
vcopy(closest, b);
return;
}
// Check if P in edge region of AB, if so return projection of P onto AB
float vc = d1*d4 - d3*d2;
if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f)
{
// barycentric coordinates (1-v,v,0)
float v = d1 / (d1 - d3);
closest[0] = a[0] + v * ab[0];
closest[1] = a[1] + v * ab[1];
closest[2] = a[2] + v * ab[2];
return;
}
// Check if P in vertex region outside C
float cp[3];
vsub(cp, p, c);
float d5 = vdot(ab, cp);
float d6 = vdot(ac, cp);
if (d6 >= 0.0f && d5 <= d6)
{
// barycentric coordinates (0,0,1)
vcopy(closest, c);
return;
}
// Check if P in edge region of AC, if so return projection of P onto AC
float vb = d5*d2 - d1*d6;
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f)
{
// barycentric coordinates (1-w,0,w)
float w = d2 / (d2 - d6);
closest[0] = a[0] + w * ac[0];
closest[1] = a[1] + w * ac[1];
closest[2] = a[2] + w * ac[2];
return;
}
// Check if P in edge region of BC, if so return projection of P onto BC
float va = d3*d6 - d5*d4;
if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f)
{
// barycentric coordinates (0,1-w,w)
float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
closest[0] = b[0] + w * (c[0] - b[0]);
closest[1] = b[1] + w * (c[1] - b[1]);
closest[2] = b[2] + w * (c[2] - b[2]);
return;
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
float denom = 1.0f / (va + vb + vc);
float v = vb * denom;
float w = vc * denom;
closest[0] = a[0] + ab[0] * v + ac[0] * w;
closest[1] = a[1] + ab[1] * v + ac[1] * w;
closest[2] = a[2] + ab[2] * v + ac[2] * w;
}
bool intersectSegmentPoly2D(const float* p0, const float* p1,
const float* verts, int nverts,
float& tmin, float& tmax,
int& segMin, int& segMax)
{
static const float EPS = 0.00000001f;
tmin = 0;
tmax = 1;
segMin = -1;
segMax = -1;
float dir[3];
vsub(dir, p1, p0);
for (int i = 0, j = nverts-1; i < nverts; j=i++)
{
float edge[3], diff[3];
vsub(edge, &verts[i*3], &verts[j*3]);
vsub(diff, p0, &verts[j*3]);
float n = vperp2D(edge, diff);
float d = -vperp2D(edge, dir);
if (fabs(d) < EPS)
{
// S is nearly parallel to this edge
if (n < 0)
return false;
else
continue;
}
float t = n / d;
if (d < 0)
{
// segment S is entering across this edge
if (t > tmin)
{
tmin = t;
segMin = j;
// S enters after leaving polygon
if (tmin > tmax)
return false;
}
}
else
{
// segment S is leaving across this edge
if (t < tmax)
{
tmax = t;
segMax = j;
// S leaves before entering polygon
if (tmax < tmin)
return false;
}
}
}
return true;
}
float distancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t)
{
float pqx = q[0] - p[0];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqz*pqz;
t = pqx*dx + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = p[0] + t*pqx - pt[0];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dz*dz;
}
void calcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts)
{
tc[0] = 0.0f;
tc[1] = 0.0f;
tc[2] = 0.0f;
for (int j = 0; j < nidx; ++j)
{
const float* v = &verts[idx[j]*3];
tc[0] += v[0];
tc[1] += v[1];
tc[2] += v[2];
}
const float s = 1.0f / nidx;
tc[0] *= s;
tc[1] *= s;
tc[2] *= s;
}
inline float vdot2(const float* a, const float* b)
{
return a[0]*b[0] + a[2]*b[2];
}
#include <stdio.h>
bool closestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h)
{
float v0[3], v1[3], v2[3];
vsub(v0, c,a);
vsub(v1, b,a);
vsub(v2, p,a);
const float dot00 = vdot2(v0, v0);
const float dot01 = vdot2(v0, v1);
const float dot02 = vdot2(v0, v2);
const float dot11 = vdot2(v1, v1);
const float dot12 = vdot2(v1, v2);
// Compute barycentric coordinates
float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// The (sloppy) epsilon is needed to allow to get height of points which
// are interpolated along the edges of the triangles.
static const float EPS = 1e-4f;
// If point lies inside the triangle, return interpolated ycoord.
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
{
h = a[1] + v0[1]*u + v1[1]*v;
return true;
}
return false;
}

@ -0,0 +1,496 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "DetourDebugDraw.h"
#include "DetourStatNavMesh.h"
#include "SDL.h"
#include "SDL_Opengl.h"
void dtDebugDrawStatNavMeshPoly(const dtStatNavMesh* mesh, dtStatPolyRef ref, const float* col)
{
int idx = mesh->getPolyIndexByRef(ref);
if (idx == -1) return;
glColor4f(col[0],col[1],col[2],0.25f);
if (mesh->getPolyDetailCount())
{
const dtStatPoly* p = mesh->getPoly(idx);
const dtStatPolyDetail* pd = mesh->getPolyDetail(idx);
glBegin(GL_TRIANGLES);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = mesh->getDetailTri(pd->tbase+j);
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
glVertex3fv(mesh->getVertex(p->v[t[k]]));
else
glVertex3fv(mesh->getDetailVertex(pd->vbase+(t[k]-p->nv)));
}
}
glEnd();
}
else
{
const dtStatPoly* p = mesh->getPoly(idx);
glBegin(GL_TRIANGLES);
unsigned short vi[3];
for (int j = 2; j < (int)p->nv; ++j)
{
vi[0] = p->v[0];
vi[1] = p->v[j-1];
vi[2] = p->v[j];
for (int k = 0; k < 3; ++k)
{
const float* v = mesh->getVertex(vi[k]);
glVertex3f(v[0], v[1]+0.2f, v[2]);
}
}
glEnd();
}
}
static void drawBoxWire(float minx, float miny, float minz, float maxx, float maxy, float maxz, const float* col)
{
glColor4fv(col);
// Top
glVertex3f(minx, miny, minz);
glVertex3f(maxx, miny, minz);
glVertex3f(maxx, miny, minz);
glVertex3f(maxx, miny, maxz);
glVertex3f(maxx, miny, maxz);
glVertex3f(minx, miny, maxz);
glVertex3f(minx, miny, maxz);
glVertex3f(minx, miny, minz);
// bottom
glVertex3f(minx, maxy, minz);
glVertex3f(maxx, maxy, minz);
glVertex3f(maxx, maxy, minz);
glVertex3f(maxx, maxy, maxz);
glVertex3f(maxx, maxy, maxz);
glVertex3f(minx, maxy, maxz);
glVertex3f(minx, maxy, maxz);
glVertex3f(minx, maxy, minz);
// Sides
glVertex3f(minx, miny, minz);
glVertex3f(minx, maxy, minz);
glVertex3f(maxx, miny, minz);
glVertex3f(maxx, maxy, minz);
glVertex3f(maxx, miny, maxz);
glVertex3f(maxx, maxy, maxz);
glVertex3f(minx, miny, maxz);
glVertex3f(minx, maxy, maxz);
}
void dtDebugDrawStatNavMeshBVTree(const dtStatNavMesh* mesh)
{
const float col[] = { 1,1,1,0.5f };
const dtStatNavMeshHeader* hdr = mesh->getHeader();
const dtStatBVNode* nodes = mesh->getBvTreeNodes();
int nnodes = mesh->getBvTreeNodeCount();
glBegin(GL_LINES);
for (int i = 0; i < nnodes; ++i)
{
const dtStatBVNode* n = &nodes[i];
if (n->i < 0) // Leaf indices are positive.
continue;
drawBoxWire(hdr->bmin[0] + n->bmin[0]*hdr->cs,
hdr->bmin[1] + n->bmin[1]*hdr->cs,
hdr->bmin[2] + n->bmin[2]*hdr->cs,
hdr->bmin[0] + n->bmax[0]*hdr->cs,
hdr->bmin[1] + n->bmax[1]*hdr->cs,
hdr->bmin[2] + n->bmax[2]*hdr->cs, col);
}
glEnd();
}
static float distancePtLine2d(const float* pt, const float* p, const float* q)
{
float pqx = q[0] - p[0];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqz*pqz;
float t = pqx*dx + pqz*dz;
if (d != 0) t /= d;
dx = p[0] + t*pqx - pt[0];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dz*dz;
}
static void drawStatMeshPolyBoundaries(const dtStatNavMesh* mesh, bool inner)
{
static const float thr = 0.01f*0.01f;
glBegin(GL_LINES);
for (int i = 0; i < mesh->getPolyCount(); ++i)
{
const dtStatPoly* p = mesh->getPoly(i);
const dtStatPolyDetail* pd = mesh->getPolyDetail(i);
for (int j = 0, nj = (int)p->nv; j < nj; ++j)
{
if (inner)
{
// Skip non-connected edges.
if (p->n[j] == 0) continue;
}
else
{
// Skip connected edges.
if (p->n[j] != 0) continue;
}
const float* v0 = mesh->getVertex(p->v[j]);
const float* v1 = mesh->getVertex(p->v[(j+1) % nj]);
// Draw detail mesh edges which align with the actual poly edge.
// This is really slow.
for (int k = 0; k < pd->ntris; ++k)
{
const unsigned char* t = mesh->getDetailTri(pd->tbase+k);
const float* tv[3];
for (int m = 0; m < 3; ++m)
{
if (t[m] < p->nv)
tv[m] = mesh->getVertex(p->v[t[m]]);
else
tv[m] = mesh->getDetailVertex(pd->vbase+(t[m]-p->nv));
}
for (int m = 0, n = 2; m < 3; n=m++)
{
if (((t[3] >> (n*2)) & 0x3) == 0) continue; // Skip inner edges.
if (distancePtLine2d(tv[n],v0,v1) < thr &&
distancePtLine2d(tv[m],v0,v1) < thr)
{
glVertex3fv(tv[n]);
glVertex3fv(tv[m]);
}
}
}
}
}
glEnd();
}
void dtDebugDrawStatNavMesh(const dtStatNavMesh* mesh, bool drawClosedList)
{
glBegin(GL_TRIANGLES);
for (int i = 0; i < mesh->getPolyDetailCount(); ++i)
{
const dtStatPoly* p = mesh->getPoly(i);
const dtStatPolyDetail* pd = mesh->getPolyDetail(i);
if (drawClosedList && mesh->isInClosedList(i+1))
glColor4ub(255,196,0,64);
else
glColor4ub(0,196,255,64);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = mesh->getDetailTri(pd->tbase+j);
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
glVertex3fv(mesh->getVertex(p->v[t[k]]));
else
glVertex3fv(mesh->getDetailVertex(pd->vbase+(t[k]-p->nv)));
}
}
}
glEnd();
// Draw inter poly boundaries
glColor4ub(0,48,64,32);
glLineWidth(1.5f);
drawStatMeshPolyBoundaries(mesh, true);
// Draw outer poly boundaries
glLineWidth(2.5f);
glColor4ub(0,48,64,220);
drawStatMeshPolyBoundaries(mesh, false);
glLineWidth(1.0f);
glPointSize(3.0f);
glColor4ub(0,0,0,196);
glBegin(GL_POINTS);
for (int i = 0; i < mesh->getVertexCount(); ++i)
{
const float* v = mesh->getVertex(i);
glVertex3f(v[0], v[1], v[2]);
}
glEnd();
glPointSize(1.0f);
}
static void drawTilePolyBoundaries(const dtTileHeader* header, bool inner)
{
static const float thr = 0.01f*0.01f;
glBegin(GL_LINES);
for (int i = 0; i < header->npolys; ++i)
{
const dtTilePoly* p = &header->polys[i];
const dtTilePolyDetail* pd = &header->dmeshes[i];
for (int j = 0, nj = (int)p->nv; j < nj; ++j)
{
if (inner)
{
if (p->n[j] == 0) continue;
if (p->n[j] & 0x8000)
{
bool con = false;
for (int k = 0; k < p->nlinks; ++k)
{
if (header->links[p->links+k].e == j)
{
con = true;
break;
}
}
if (con)
glColor4ub(255,255,255,128);
else
glColor4ub(0,0,0,128);
}
else
glColor4ub(0,48,64,32);
}
else
{
if (p->n[j] != 0) continue;
}
const float* v0 = &header->verts[p->v[j]*3];
const float* v1 = &header->verts[p->v[(j+1)%nj]*3];
// Draw detail mesh edges which align with the actual poly edge.
// This is really slow.
for (int k = 0; k < pd->ntris; ++k)
{
const unsigned char* t = &header->dtris[(pd->tbase+k)*4];
const float* tv[3];
for (int m = 0; m < 3; ++m)
{
if (t[m] < p->nv)
tv[m] = &header->verts[p->v[t[m]]*3];
else
tv[m] = &header->dverts[(pd->vbase+(t[m]-p->nv))*3];
}
for (int m = 0, n = 2; m < 3; n=m++)
{
if (((t[3] >> (n*2)) & 0x3) == 0) continue; // Skip inner detail edges.
if (distancePtLine2d(tv[n],v0,v1) < thr &&
distancePtLine2d(tv[m],v0,v1) < thr)
{
glVertex3fv(tv[n]);
glVertex3fv(tv[m]);
}
}
}
}
}
glEnd();
}
static void drawTile(const dtTileHeader* header)
{
glBegin(GL_TRIANGLES);
for (int i = 0; i < header->npolys; ++i)
{
const dtTilePoly* p = &header->polys[i];
const dtTilePolyDetail* pd = &header->dmeshes[i];
glColor4ub(0,196,255,64);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = &header->dtris[(pd->tbase+j)*4];
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
glVertex3fv(&header->verts[p->v[t[k]]*3]);
else
glVertex3fv(&header->dverts[(pd->vbase+t[k]-p->nv)*3]);
}
}
}
glEnd();
// Draw inter poly boundaries
glColor4ub(0,48,64,32);
glLineWidth(1.5f);
drawTilePolyBoundaries(header, true);
// Draw outer poly boundaries
glLineWidth(2.5f);
glColor4ub(0,48,64,220);
drawTilePolyBoundaries(header, false);
glLineWidth(1.0f);
glPointSize(3.0f);
glColor4ub(0,0,0,196);
glBegin(GL_POINTS);
for (int i = 0; i < header->nverts; ++i)
{
const float* v = &header->verts[i*3];
glVertex3f(v[0], v[1], v[2]);
}
glEnd();
glPointSize(1.0f);
// Draw portals
/* glBegin(GL_LINES);
for (int i = 0; i < header->nportals[0]; ++i)
{
const dtTilePortal* p = &header->portals[0][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmin[0]);
}
for (int i = 0; i < header->nportals[1]; ++i)
{
const dtTilePortal* p = &header->portals[1][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(p->bmin[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmin[1], header->bmax[2]-0.1f);
}
for (int i = 0; i < header->nportals[2]; ++i)
{
const dtTilePortal* p = &header->portals[2][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmin[0]);
}
for (int i = 0; i < header->nportals[3]; ++i)
{
const dtTilePortal* p = &header->portals[3][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(p->bmin[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmin[1], header->bmin[2]+0.1f);
}
glEnd();*/
}
void dtDebugDrawTiledNavMesh(const dtTiledNavMesh* mesh)
{
if (!mesh) return;
for (int i = 0; i < DT_MAX_TILES; ++i)
{
const dtTile* tile = mesh->getTile(i);
if (!tile->header) continue;
drawTile(tile->header);
}
}
void dtDebugDrawTiledNavMeshPoly(const dtTiledNavMesh* mesh, dtTilePolyRef ref, const float* col)
{
unsigned int salt, it, ip;
dtDecodeTileId(ref, salt, it, ip);
if (it >= DT_MAX_TILES) return;
const dtTile* tile = mesh->getTile(it);
if (tile->salt != salt || tile->header == 0) return;
const dtTileHeader* header = tile->header;
if (ip >= (unsigned int)header->npolys) return;
glColor4f(col[0],col[1],col[2],0.25f);
const dtTilePoly* p = &header->polys[ip];
const dtTilePolyDetail* pd = &header->dmeshes[ip];
glBegin(GL_TRIANGLES);
for (int i = 0; i < pd->ntris; ++i)
{
const unsigned char* t = &header->dtris[(pd->tbase+i)*4];
for (int j = 0; j < 3; ++j)
{
if (t[j] < p->nv)
glVertex3fv(&header->verts[p->v[t[j]]*3]);
else
glVertex3fv(&header->dverts[(pd->vbase+t[j]-p->nv)*3]);
}
}
glEnd();
}

@ -0,0 +1,140 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "DetourNode.h"
#include <string.h>
//////////////////////////////////////////////////////////////////////////////////////////
dtNodePool::dtNodePool(int maxNodes, int hashSize) :
m_nodes(0),
m_first(0),
m_next(0),
m_maxNodes(maxNodes),
m_hashSize(hashSize),
m_nodeCount(0)
{
m_nodes = new dtNode[m_maxNodes];
m_next = new unsigned short[m_maxNodes];
m_first = new unsigned short[hashSize];
memset(m_first, 0xff, sizeof(unsigned short)*m_hashSize);
memset(m_next, 0xff, sizeof(unsigned short)*m_maxNodes);
}
dtNodePool::~dtNodePool()
{
delete [] m_nodes;
delete [] m_next;
delete [] m_first;
}
void dtNodePool::clear()
{
memset(m_first, 0xff, sizeof(unsigned short)*m_hashSize);
m_nodeCount = 0;
}
const dtNode* dtNodePool::findNode(unsigned int id) const
{
unsigned int bucket = hashint(id) & (m_hashSize-1);
unsigned short i = m_first[bucket];
while (i != 0xffff)
{
if (m_nodes[i].id == id)
return &m_nodes[i];
i = m_next[i];
}
return 0;
}
dtNode* dtNodePool::getNode(unsigned int id)
{
unsigned int bucket = hashint(id) & (m_hashSize-1);
unsigned short i = m_first[bucket];
dtNode* node = 0;
while (i != 0xffff)
{
if (m_nodes[i].id == id)
return &m_nodes[i];
i = m_next[i];
}
if (m_nodeCount >= m_maxNodes)
return 0;
i = (unsigned short)m_nodeCount;
m_nodeCount++;
// Init node
node = &m_nodes[i];
node->pidx = 0;
node->cost = 0;
node->total = 0;
node->id = id;
node->flags = 0;
m_next[i] = m_first[bucket];
m_first[bucket] = i;
return node;
}
//////////////////////////////////////////////////////////////////////////////////////////
dtNodeQueue::dtNodeQueue(int n) :
m_heap(0),
m_capacity(n),
m_size(0)
{
m_heap = new dtNode*[m_capacity+1];
}
dtNodeQueue::~dtNodeQueue()
{
delete [] m_heap;
}
void dtNodeQueue::bubbleUp(int i, dtNode* node)
{
int parent = (i-1)/2;
// note: (index > 0) means there is a parent
while ((i > 0) && (m_heap[parent]->total > node->total))
{
m_heap[i] = m_heap[parent];
i = parent;
parent = (i-1)/2;
}
m_heap[i] = node;
}
void dtNodeQueue::trickleDown(int i, dtNode* node)
{
int child = (i*2)+1;
while (child < m_size)
{
if (((child+1) < m_size) &&
(m_heap[child]->total > m_heap[child+1]->total))
{
child++;
}
m_heap[i] = m_heap[child];
i = child;
child = (i*2)+1;
}
bubbleUp(i, node);
}

@ -0,0 +1,876 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <float.h>
#include <string.h>
#include <stdio.h>
#include "DetourStatNavMesh.h"
#include "DetourNode.h"
#include "DetourCommon.h"
//////////////////////////////////////////////////////////////////////////////////////////
dtStatNavMesh::dtStatNavMesh() :
m_data(0),
m_dataSize(0),
m_header(0),
m_nodePool(0),
m_openList(0)
{
}
dtStatNavMesh::~dtStatNavMesh()
{
delete m_nodePool;
delete m_openList;
if (m_data)
delete [] m_data;
}
bool dtStatNavMesh::init(unsigned char* data, int dataSize, bool ownsData)
{
dtStatNavMeshHeader* header = (dtStatNavMeshHeader*)data;
if (header->magic != DT_STAT_NAVMESH_MAGIC)
return false;
if (header->version != DT_STAT_NAVMESH_VERSION)
return false;
const int headerSize = sizeof(dtStatNavMeshHeader);
const int vertsSize = sizeof(float)*3*header->nverts;
const int polysSize = sizeof(dtStatPoly)*header->npolys;
const int nodesSize = sizeof(dtStatBVNode)*header->npolys*2;
const int detailMeshesSize = sizeof(dtStatPolyDetail)*header->ndmeshes;
const int detailVertsSize = sizeof(float)*3*header->ndverts;
const int detailTrisSize = sizeof(unsigned char)*4*header->ndtris;
unsigned char* d = data + headerSize;
header->verts = (float*)d; d += vertsSize;
header->polys = (dtStatPoly*)d; d += polysSize;
header->bvtree = (dtStatBVNode*)d; d += nodesSize;
header->dmeshes = (dtStatPolyDetail*)d; d += detailMeshesSize;
header->dverts = (float*)d; d += detailVertsSize;
header->dtris = (unsigned char*)d; d += detailTrisSize;
m_nodePool = new dtNodePool(2048, 256);
if (!m_nodePool)
return false;
m_openList = new dtNodeQueue(2048);
if (!m_openList)
return false;
if (ownsData)
{
m_data = data;
m_dataSize = dataSize;
}
m_header = header;
return true;
}
const dtStatPoly* dtStatNavMesh::getPolyByRef(dtStatPolyRef ref) const
{
if (!m_header || ref == 0 || (int)ref > m_header->npolys) return 0;
return &m_header->polys[ref-1];
}
int dtStatNavMesh::getPolyIndexByRef(dtStatPolyRef ref) const
{
if (!m_header || ref == 0 || (int)ref > m_header->npolys) return -1;
return (int)ref-1;
}
int dtStatNavMesh::findPath(dtStatPolyRef startRef, dtStatPolyRef endRef,
const float* startPos, const float* endPos,
dtStatPolyRef* path, const int maxPathSize)
{
if (!m_header) return 0;
if (!startRef || !endRef)
return 0;
if (!maxPathSize)
return 0;
if (startRef == endRef)
{
path[0] = startRef;
return 1;
}
m_nodePool->clear();
m_openList->clear();
static const float H_SCALE = 1.1f; // Heuristic scale.
dtNode* startNode = m_nodePool->getNode(startRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = vdist(startPos, endPos) * H_SCALE;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
dtNode* lastBestNode = startNode;
float lastBestNodeCost = startNode->total;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
if (bestNode->id == endRef)
{
lastBestNode = bestNode;
break;
}
const dtStatPoly* poly = getPoly(bestNode->id-1);
for (int i = 0; i < (int)poly->nv; ++i)
{
dtStatPolyRef neighbour = poly->n[i];
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Calculate cost.
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, startPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.cost = parent->cost + vdist(p0,p1);
// Special case for last node.
if (newNode.id == endRef)
newNode.cost += vdist(p1, endPos);
// Heuristic
const float h = vdist(p1,endPos)*H_SCALE;
newNode.total = newNode.cost + h;
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->cost = newNode.cost;
actualNode->total = newNode.total;
if (h < lastBestNodeCost)
{
lastBestNodeCost = h;
lastBestNode = actualNode;
}
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
// Reverse the path.
dtNode* prev = 0;
dtNode* node = lastBestNode;
do
{
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
node->pidx = m_nodePool->getNodeIdx(prev);
prev = node;
node = next;
}
while (node);
// Store path
node = prev;
int n = 0;
do
{
path[n++] = node->id;
node = m_nodePool->getNodeAtIdx(node->pidx);
}
while (node && n < maxPathSize);
return n;
}
bool dtStatNavMesh::closestPointToPoly(dtStatPolyRef ref, const float* pos, float* closest) const
{
int idx = getPolyIndexByRef(ref);
if (idx == -1)
return false;
float closestDistSqr = FLT_MAX;
const dtStatPoly* p = getPoly(idx);
const dtStatPolyDetail* pd = getPolyDetail(idx);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = getDetailTri(pd->tbase+j);
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
v[k] = getVertex(p->v[t[k]]);
else
v[k] = getDetailVertex(pd->vbase+(t[k]-p->nv));
}
float pt[3];
closestPtPointTriangle(pt, pos, v[0], v[1], v[2]);
float d = vdistSqr(pos, pt);
if (d < closestDistSqr)
{
vcopy(closest, pt);
closestDistSqr = d;
}
}
return true;
}
bool dtStatNavMesh::getPolyHeight(dtStatPolyRef ref, const float* pos, float* height) const
{
int idx = getPolyIndexByRef(ref);
if (idx == -1)
return false;
const dtStatPoly* p = getPoly(idx);
const dtStatPolyDetail* pd = getPolyDetail(idx);
for (int i = 0; i < pd->ntris; ++i)
{
const unsigned char* t = getDetailTri(pd->tbase+i);
const float* v[3];
for (int j = 0; j < 3; ++j)
{
if (t[j] < p->nv)
v[j] = getVertex(p->v[t[j]]);
else
v[j] = getDetailVertex(pd->vbase+(t[j]-p->nv));
}
float h;
if (closestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
if (height)
*height = h;
return true;
}
}
return false;
}
int dtStatNavMesh::findStraightPath(const float* startPos, const float* endPos,
const dtStatPolyRef* path, const int pathSize,
float* straightPath, const int maxStraightPathSize)
{
if (!m_header) return 0;
if (!maxStraightPathSize)
return 0;
if (!path[0])
return 0;
int straightPathSize = 0;
float closestStartPos[3];
if (!closestPointToPoly(path[0], startPos, closestStartPos))
return 0;
// Add start point.
vcopy(&straightPath[straightPathSize*3], closestStartPos);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
float closestEndPos[3];
if (!closestPointToPoly(path[pathSize-1], endPos, closestEndPos))
return 0;
float portalApex[3], portalLeft[3], portalRight[3];
if (pathSize > 1)
{
vcopy(portalApex, closestStartPos);
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
int apexIndex = 0;
int leftIndex = 0;
int rightIndex = 0;
for (int i = 0; i < pathSize; ++i)
{
float left[3], right[3];
if (i < pathSize-1)
{
// Next portal.
getPortalPoints(path[i], path[i+1], left, right);
}
else
{
// End of the path.
vcopy(left, closestEndPos);
vcopy(right, closestEndPos);
}
// Right vertex.
if (vequal(portalApex, portalRight))
{
vcopy(portalRight, right);
rightIndex = i;
}
else
{
if (triArea2D(portalApex, portalRight, right) <= 0.0f)
{
if (triArea2D(portalApex, portalLeft, right) > 0.0f)
{
vcopy(portalRight, right);
rightIndex = i;
}
else
{
vcopy(portalApex, portalLeft);
apexIndex = leftIndex;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
// Left vertex.
if (vequal(portalApex, portalLeft))
{
vcopy(portalLeft, left);
leftIndex = i;
}
else
{
if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
{
if (triArea2D(portalApex, portalRight, left) < 0.0f)
{
vcopy(portalLeft, left);
leftIndex = i;
}
else
{
vcopy(portalApex, portalRight);
apexIndex = rightIndex;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
}
}
// Add end point.
vcopy(&straightPath[straightPathSize*3], closestEndPos);
straightPathSize++;
return straightPathSize;
}
int dtStatNavMesh::getPolyVerts(dtStatPolyRef ref, float* verts) const
{
if (!m_header) return 0;
const dtStatPoly* poly = getPolyByRef(ref);
if (!poly) return 0;
float* v = verts;
for (int i = 0; i < (int)poly->nv; ++i)
{
const float* cv = &m_header->verts[poly->v[i]*3];
*v++ = cv[0];
*v++ = cv[1];
*v++ = cv[2];
}
return (int)poly->nv;
}
int dtStatNavMesh::raycast(dtStatPolyRef centerRef, const float* startPos, const float* endPos,
float& t, dtStatPolyRef* path, const int pathSize)
{
if (!m_header) return 0;
if (!centerRef) return 0;
dtStatPolyRef prevRef = centerRef;
dtStatPolyRef curRef = centerRef;
t = 0;
float verts[DT_STAT_VERTS_PER_POLYGON*3];
int n = 0;
while (curRef)
{
// Cast ray against current polygon.
int nv = getPolyVerts(curRef, verts);
if (nv < 3)
{
// Hit bad polygon, report hit.
return n;
}
float tmin, tmax;
int segMin, segMax;
if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
{
// Could not a polygon, keep the old t and report hit.
return n;
}
// Keep track of furthest t so far.
if (tmax > t)
t = tmax;
if (n < pathSize)
path[n++] = curRef;
// Check the neighbour of this polygon.
const dtStatPoly* poly = getPolyByRef(curRef);
dtStatPolyRef nextRef = poly->n[segMax];
if (!nextRef)
{
// No neighbour, we hit a wall.
return n;
}
// No hit, advance to neighbour polygon.
prevRef = curRef;
curRef = nextRef;
}
return n;
}
float dtStatNavMesh::findDistanceToWall(dtStatPolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal)
{
if (!m_header) return 0;
if (!centerRef) return 0;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(centerRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
float radiusSqr = sqr(maxRadius);
hitNormal[0] = 1;
hitNormal[1] = 0;
hitNormal[2] = 0;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
const dtStatPoly* poly = getPoly(bestNode->id-1);
// Hit test walls.
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
{
// Skip non-solid edges.
if (poly->n[j]) continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
// Hit wall, update radius.
radiusSqr = distSqr;
// Calculate hit pos.
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
}
// Check to see if teh circle expands to one of the neighbours and expand.
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
{
// Skip solid edges.
if (!poly->n[j]) continue;
// Expand to neighbour if not visited yet.
dtStatPolyRef neighbour = poly->n[j];
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Cost
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, centerPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.total = parent->total + vdist(p0,p1);
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->total = newNode.total;
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
// Calc hit normal.
vsub(hitNormal, centerPos, hitPos);
vnormalize(hitNormal);
return sqrtf(radiusSqr);
}
int dtStatNavMesh::findPolysAround(dtStatPolyRef centerRef, const float* centerPos, float radius,
dtStatPolyRef* resultRef, dtStatPolyRef* resultParent, float* resultCost,
const int maxResult)
{
if (!m_header) return 0;
if (!centerRef) return 0;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(centerRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
int n = 0;
if (n < maxResult)
{
if (resultRef)
resultRef[n] = startNode->id;
if (resultParent)
resultParent[n] = 0;
if (resultCost)
resultCost[n] = 0;
++n;
}
const float radiusSqr = sqr(radius);
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
const dtStatPoly* poly = getPoly(bestNode->id-1);
for (unsigned i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j=i++)
{
dtStatPolyRef neighbour = poly->n[j];
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// If the circle is not touching the next polygon, skip it.
if (distSqr > radiusSqr)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Cost
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, centerPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.total = parent->total + vdist(p0,p1);
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->total = newNode.total;
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
if (n < maxResult)
{
if (resultRef)
resultRef[n] = actualNode->id;
if (resultParent)
resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id;
if (resultCost)
resultCost[n] = actualNode->total;
++n;
}
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
return n;
}
// Returns polygons which are withing certain radius from the query location.
int dtStatNavMesh::queryPolygons(const float* center, const float* extents,
dtStatPolyRef* polys, const int maxIds)
{
if (!m_header) return 0;
const dtStatBVNode* node = &m_header->bvtree[0];
const dtStatBVNode* end = &m_header->bvtree[m_header->nnodes];
// Calculate quantized box
const float ics = 1.0f / m_header->cs;
unsigned short bmin[3], bmax[3];
// Clamp query box to world box.
float minx = clamp(center[0] - extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
float miny = clamp(center[1] - extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
float minz = clamp(center[2] - extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
float maxx = clamp(center[0] + extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
float maxy = clamp(center[1] + extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
float maxz = clamp(center[2] + extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
// Quantize
bmin[0] = (unsigned short)(ics * minx) & 0xfffe;
bmin[1] = (unsigned short)(ics * miny) & 0xfffe;
bmin[2] = (unsigned short)(ics * minz) & 0xfffe;
bmax[0] = (unsigned short)(ics * maxx + 1) | 1;
bmax[1] = (unsigned short)(ics * maxy + 1) | 1;
bmax[2] = (unsigned short)(ics * maxz + 1) | 1;
// Traverse tree
int n = 0;
while (node < end)
{
bool overlap = checkOverlapBox(bmin, bmax, node->bmin, node->bmax);
bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxIds)
{
polys[n] = (dtStatPolyRef)node->i;
n++;
}
}
if (overlap || isLeafNode)
node++;
else
{
const int escapeIndex = -node->i;
node += escapeIndex;
}
}
return n;
}
dtStatPolyRef dtStatNavMesh::findNearestPoly(const float* center, const float* extents)
{
if (!m_header) return 0;
// Get nearby polygons from proximity grid.
dtStatPolyRef polys[128];
int npolys = queryPolygons(center, extents, polys, 128);
// Find nearest polygon amongst the nearby polygons.
dtStatPolyRef nearest = 0;
float nearestDistanceSqr = FLT_MAX;
for (int i = 0; i < npolys; ++i)
{
dtStatPolyRef ref = polys[i];
float closest[3];
if (!closestPointToPoly(ref, center, closest))
continue;
float d = vdistSqr(center, closest);
if (d < nearestDistanceSqr)
{
nearestDistanceSqr = d;
nearest = ref;
}
}
return nearest;
}
bool dtStatNavMesh::getPortalPoints(dtStatPolyRef from, dtStatPolyRef to, float* left, float* right) const
{
const dtStatPoly* fromPoly = getPolyByRef(from);
if (!fromPoly)
return false;
// Find common edge between the polygons and returns the segment end points.
for (unsigned i = 0, j = (int)fromPoly->nv - 1; i < (int)fromPoly->nv; j = i++)
{
unsigned short neighbour = fromPoly->n[j];
if (neighbour == to)
{
vcopy(left, getVertex(fromPoly->v[j]));
vcopy(right, getVertex(fromPoly->v[i]));
return true;
}
}
return false;
}
bool dtStatNavMesh::getEdgeMidPoint(dtStatPolyRef from, dtStatPolyRef to, float* mid) const
{
float left[3], right[3];
if (!getPortalPoints(from, to, left,right)) return false;
mid[0] = (left[0]+right[0])*0.5f;
mid[1] = (left[1]+right[1])*0.5f;
mid[2] = (left[2]+right[2])*0.5f;
return true;
}
bool dtStatNavMesh::isInClosedList(dtStatPolyRef ref) const
{
if (!m_nodePool) return false;
const dtNode* node = m_nodePool->findNode(ref);
return node && node->flags & DT_NODE_CLOSED;
}
int dtStatNavMesh::getMemUsed() const
{
if (!m_nodePool || ! m_openList)
return 0;
return sizeof(*this) + m_dataSize +
m_nodePool->getMemUsed() +
m_openList->getMemUsed();
}

@ -0,0 +1,346 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "DetourStatNavMesh.h"
struct BVItem
{
unsigned short bmin[3];
unsigned short bmax[3];
int i;
};
static int compareItemX(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[0] < b->bmin[0])
return -1;
if (a->bmin[0] > b->bmin[0])
return 1;
return 0;
}
static int compareItemY(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[1] < b->bmin[1])
return -1;
if (a->bmin[1] > b->bmin[1])
return 1;
return 0;
}
static int compareItemZ(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[2] < b->bmin[2])
return -1;
if (a->bmin[2] > b->bmin[2])
return 1;
return 0;
}
static void calcExtends(BVItem* items, int nitems, int imin, int imax,
unsigned short* bmin, unsigned short* bmax)
{
bmin[0] = items[imin].bmin[0];
bmin[1] = items[imin].bmin[1];
bmin[2] = items[imin].bmin[2];
bmax[0] = items[imin].bmax[0];
bmax[1] = items[imin].bmax[1];
bmax[2] = items[imin].bmax[2];
for (int i = imin+1; i < imax; ++i)
{
const BVItem& it = items[i];
if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2];
if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2];
}
}
inline int longestAxis(unsigned short x, unsigned short y, unsigned short z)
{
int axis = 0;
unsigned short maxVal = x;
if (y > maxVal)
{
axis = 1;
maxVal = y;
}
if (z > maxVal)
{
axis = 2;
maxVal = z;
}
return axis;
}
static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtStatBVNode* nodes)
{
int inum = imax - imin;
int icur = curNode;
dtStatBVNode& node = nodes[curNode++];
if (inum == 1)
{
// Leaf
node.bmin[0] = items[imin].bmin[0];
node.bmin[1] = items[imin].bmin[1];
node.bmin[2] = items[imin].bmin[2];
node.bmax[0] = items[imin].bmax[0];
node.bmax[1] = items[imin].bmax[1];
node.bmax[2] = items[imin].bmax[2];
node.i = items[imin].i;
}
else
{
// Split
calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
int axis = longestAxis(node.bmax[0] - node.bmin[0],
node.bmax[1] - node.bmin[1],
node.bmax[2] - node.bmin[2]);
if (axis == 0)
{
// Sort along x-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemX);
}
else if (axis == 1)
{
// Sort along y-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemY);
}
else
{
// Sort along z-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemZ);
}
int isplit = imin+inum/2;
// Left
subdivide(items, nitems, imin, isplit, curNode, nodes);
// Right
subdivide(items, nitems, isplit, imax, curNode, nodes);
int iescape = curNode - icur;
// Negative index means escape.
node.i = -iescape;
}
}
static int createBVTree(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
float cs, float ch,
int nnodes, dtStatBVNode* nodes)
{
// Build tree
BVItem* items = new BVItem[npolys];
for (int i = 0; i < npolys; i++)
{
BVItem& it = items[i];
it.i = i+1;
// Calc polygon bounds.
const unsigned short* p = &polys[i*nvp*2];
it.bmin[0] = it.bmax[0] = verts[p[0]*3+0];
it.bmin[1] = it.bmax[1] = verts[p[0]*3+1];
it.bmin[2] = it.bmax[2] = verts[p[0]*3+2];
for (int j = 1; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
unsigned short x = verts[p[j]*3+0];
unsigned short y = verts[p[j]*3+1];
unsigned short z = verts[p[j]*3+2];
if (x < it.bmin[0]) it.bmin[0] = x;
if (y < it.bmin[1]) it.bmin[1] = y;
if (z < it.bmin[2]) it.bmin[2] = z;
if (x > it.bmax[0]) it.bmax[0] = x;
if (y > it.bmax[1]) it.bmax[1] = y;
if (z > it.bmax[2]) it.bmax[2] = z;
}
// Remap y
it.bmin[1] = (unsigned short)floorf((float)it.bmin[1]*ch/cs);
it.bmax[1] = (unsigned short)ceilf((float)it.bmax[1]*ch/cs);
}
int curNode = 0;
subdivide(items, npolys, 0, npolys, curNode, nodes);
delete [] items;
return curNode;
}
bool dtCreateNavMeshData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const float* bmin, const float* bmax, float cs, float ch,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
unsigned char** outData, int* outDataSize)
{
if (nvp > DT_STAT_VERTS_PER_POLYGON)
return false;
if (nverts >= 0xffff)
return false;
if (!nverts)
return false;
if (!npolys)
return false;
if (!dmeshes || !dverts || ! dtris)
return false;
// Find unique detail vertices.
int uniqueDetailVerts = 0;
if (dmeshes)
{
for (int i = 0; i < npolys; ++i)
{
const unsigned short* p = &polys[i*nvp*2];
int ndv = dmeshes[i*4+1];
int nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
nv++;
}
ndv -= nv;
uniqueDetailVerts += ndv;
}
}
// Calculate data size
const int headerSize = sizeof(dtStatNavMeshHeader);
const int vertsSize = sizeof(float)*3*nverts;
const int polysSize = sizeof(dtStatPoly)*npolys;
const int nodesSize = sizeof(dtStatBVNode)*npolys*2;
const int detailMeshesSize = sizeof(dtStatPolyDetail)*npolys;
const int detailVertsSize = sizeof(float)*3*uniqueDetailVerts;
const int detailTrisSize = sizeof(unsigned char)*4*ndtris;
const int dataSize = headerSize + vertsSize + polysSize + nodesSize +
detailMeshesSize + detailVertsSize + detailTrisSize;
unsigned char* data = new unsigned char[dataSize];
if (!data)
return false;
memset(data, 0, dataSize);
unsigned char* d = data;
dtStatNavMeshHeader* header = (dtStatNavMeshHeader*)d; d += headerSize;
float* navVerts = (float*)d; d += vertsSize;
dtStatPoly* navPolys = (dtStatPoly*)d; d += polysSize;
dtStatBVNode* navNodes = (dtStatBVNode*)d; d += nodesSize;
dtStatPolyDetail* navDMeshes = (dtStatPolyDetail*)d; d += detailMeshesSize;
float* navDVerts = (float*)d; d += detailVertsSize;
unsigned char* navDTris = (unsigned char*)d; d += detailTrisSize;
// Store header
header->magic = DT_STAT_NAVMESH_MAGIC;
header->version = DT_STAT_NAVMESH_VERSION;
header->npolys = npolys;
header->nverts = nverts;
header->cs = cs;
header->bmin[0] = bmin[0];
header->bmin[1] = bmin[1];
header->bmin[2] = bmin[2];
header->bmax[0] = bmax[0];
header->bmax[1] = bmax[1];
header->bmax[2] = bmax[2];
header->ndmeshes = dmeshes ? npolys : 0;
header->ndverts = dmeshes ? uniqueDetailVerts : 0;
header->ndtris = dmeshes ? ndtris : 0;
// Store vertices
for (int i = 0; i < nverts; ++i)
{
const unsigned short* iv = &verts[i*3];
float* v = &navVerts[i*3];
v[0] = bmin[0] + iv[0] * cs;
v[1] = bmin[1] + iv[1] * ch;
v[2] = bmin[2] + iv[2] * cs;
}
// Store polygons
const unsigned short* src = polys;
for (int i = 0; i < npolys; ++i)
{
dtStatPoly* p = &navPolys[i];
p->nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (src[j] == 0xffff) break;
p->v[j] = src[j];
p->n[j] = src[nvp+j]+1;
p->nv++;
}
src += nvp*2;
}
header->nnodes = createBVTree(verts, nverts, polys, npolys, nvp,
cs, ch, npolys*2, navNodes);
// Store detail meshes and vertices.
// The nav polygon vertices are stored as the first vertices on each mesh.
// We compress the mesh data by skipping them and using the navmesh coordinates.
unsigned short vbase = 0;
for (int i = 0; i < npolys; ++i)
{
dtStatPolyDetail& dtl = navDMeshes[i];
const int vb = dmeshes[i*4+0];
const int ndv = dmeshes[i*4+1];
const int nv = navPolys[i].nv;
dtl.vbase = vbase;
dtl.nverts = ndv-nv;
dtl.tbase = dmeshes[i*4+2];
dtl.ntris = dmeshes[i*4+3];
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
if (ndv-nv)
{
memcpy(&navDVerts[vbase*3], &dverts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
vbase += ndv-nv;
}
}
// Store triangles.
memcpy(navDTris, dtris, sizeof(unsigned char)*4*ndtris);
*outData = data;
*outDataSize = dataSize;
return true;
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,213 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "DetourTileNavMesh.h"
#include "DetourCommon.h"
bool dtCreateNavMeshTileData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
const float* bmin, const float* bmax, float cs, float ch, int tileSize, int walkableClimb,
unsigned char** outData, int* outDataSize)
{
if (nvp != DT_TILE_VERTS_PER_POLYGON)
return false;
if (nverts >= 0xffff)
return false;
if (!nverts)
return false;
if (!npolys)
return false;
if (!dmeshes || !dverts || ! dtris)
return false;
// Find portal edges which are at tile borders.
int nedges = 0;
int nportals = 0;
for (int i = 0; i < npolys; ++i)
{
const unsigned short* p = &polys[i*2*nvp];
for (int j = 0; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
int nj = j+1;
if (nj >= nvp || p[nj] == 0xffff) nj = 0;
const unsigned short* va = &verts[p[j]*3];
const unsigned short* vb = &verts[p[nj]*3];
nedges++;
if (va[0] == tileSize && vb[0] == tileSize)
nportals++; // x+
else if (va[2] == tileSize && vb[2] == tileSize)
nportals++; // z+
else if (va[0] == 0 && vb[0] == 0)
nportals++; // x-
else if (va[2] == 0 && vb[2] == 0)
nportals++; // z-
}
}
const int maxLinks = nedges + nportals*2;
// Find unique detail vertices.
int uniqueDetailVerts = 0;
if (dmeshes)
{
for (int i = 0; i < npolys; ++i)
{
const unsigned short* p = &polys[i*nvp*2];
int ndv = dmeshes[i*4+1];
int nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
nv++;
}
ndv -= nv;
uniqueDetailVerts += ndv;
}
}
// Calculate data size
const int headerSize = sizeof(dtTileHeader);
const int vertsSize = sizeof(float)*3*nverts;
const int polysSize = sizeof(dtTilePoly)*npolys;
const int linksSize = sizeof(dtTileLink)*maxLinks;
const int detailMeshesSize = sizeof(dtTilePolyDetail)*npolys;
const int detailVertsSize = sizeof(float)*3*uniqueDetailVerts;
const int detailTrisSize = sizeof(unsigned char)*4*ndtris;
const int dataSize = headerSize + vertsSize + polysSize + linksSize +
detailMeshesSize + detailVertsSize + detailTrisSize;
unsigned char* data = new unsigned char[dataSize];
if (!data)
return false;
memset(data, 0, dataSize);
unsigned char* d = data;
dtTileHeader* header = (dtTileHeader*)d; d += headerSize;
float* navVerts = (float*)d; d += vertsSize;
dtTilePoly* navPolys = (dtTilePoly*)d; d += polysSize;
d += linksSize;
dtTilePolyDetail* navDMeshes = (dtTilePolyDetail*)d; d += detailMeshesSize;
float* navDVerts = (float*)d; d += detailVertsSize;
unsigned char* navDTris = (unsigned char*)d; d += detailTrisSize;
// Store header
header->magic = DT_TILE_NAVMESH_MAGIC;
header->version = DT_TILE_NAVMESH_VERSION;
header->npolys = npolys;
header->nverts = nverts;
header->maxlinks = maxLinks;
header->bmin[0] = bmin[0];
header->bmin[1] = bmin[1];
header->bmin[2] = bmin[2];
header->bmax[0] = bmax[0];
header->bmax[1] = bmax[1];
header->bmax[2] = bmax[2];
header->ndmeshes = npolys;
header->ndverts = uniqueDetailVerts;
header->ndtris = ndtris;
// Store vertices
for (int i = 0; i < nverts; ++i)
{
const unsigned short* iv = &verts[i*3];
float* v = &navVerts[i*3];
v[0] = bmin[0] + iv[0] * cs;
v[1] = bmin[1] + iv[1] * ch;
v[2] = bmin[2] + iv[2] * cs;
}
// Store polygons
const unsigned short* src = polys;
for (int i = 0; i < npolys; ++i)
{
dtTilePoly* p = &navPolys[i];
p->nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (src[j] == 0xffff) break;
p->v[j] = src[j];
p->n[j] = (src[nvp+j]+1) & 0xffff;
p->nv++;
}
src += nvp*2;
}
// Store portal edges.
for (int i = 0; i < npolys; ++i)
{
dtTilePoly* poly = &navPolys[i];
for (int j = 0; j < poly->nv; ++j)
{
int nj = j+1;
if (nj >= poly->nv) nj = 0;
const unsigned short* va = &verts[poly->v[j]*3];
const unsigned short* vb = &verts[poly->v[nj]*3];
if (va[0] == tileSize && vb[0] == tileSize) // x+
poly->n[j] = 0x8000 | 0;
else if (va[2] == tileSize && vb[2] == tileSize) // z+
poly->n[j] = 0x8000 | 1;
else if (va[0] == 0 && vb[0] == 0) // x-
poly->n[j] = 0x8000 | 2;
else if (va[2] == 0 && vb[2] == 0) // z-
poly->n[j] = 0x8000 | 3;
}
}
// Store detail meshes and vertices.
// The nav polygon vertices are stored as the first vertices on each mesh.
// We compress the mesh data by skipping them and using the navmesh coordinates.
unsigned short vbase = 0;
for (int i = 0; i < npolys; ++i)
{
dtTilePolyDetail& dtl = navDMeshes[i];
const int vb = dmeshes[i*4+0];
const int ndv = dmeshes[i*4+1];
const int nv = navPolys[i].nv;
dtl.vbase = vbase;
dtl.nverts = ndv-nv;
dtl.tbase = dmeshes[i*4+2];
dtl.ntris = dmeshes[i*4+3];
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
if (ndv-nv)
{
memcpy(&navDVerts[vbase*3], &dverts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
vbase += ndv-nv;
}
}
// Store triangles.
memcpy(navDTris, dtris, sizeof(unsigned char)*4*ndtris);
*outData = data;
*outDataSize = dataSize;
return true;
}

18
extern/recastnavigation/License.txt vendored Normal file

@ -0,0 +1,18 @@
Copyright (c) 2009 Mikko Mononen memon@inside.org
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

120
extern/recastnavigation/Readme.txt vendored Normal file

@ -0,0 +1,120 @@
Recast & Detour Version 1.4
Recast
Recast is state of the art navigation mesh construction toolset for games.
* It is automatic, which means that you can throw any level geometry
at it and you will get robust mesh out
* It is fast which means swift turnaround times for level designers
* It is open source so it comes with full source and you can
customize it to your hearts content.
The Recast process starts with constructing a voxel mold from a level geometry
and then casting a navigation mesh over it. The process consists of three steps,
building the voxel mold, partitioning the mold into simple regions, peeling off
the regions as simple polygons.
1. The voxel mold is build from the input triangle mesh by rasterizing
the triangles into a multi-layer heightfield. Some simple filters are
then applied to the mold to prune out locations where the character
would not be able to move.
2. The walkable areas described by the mold are divided into simple
overlayed 2D regions. The resulting regions have only one non-overlapping
contour, which simplifies the final step of the process tremendously.
3. The navigation polygons are peeled off from the regions by first tracing
the boundaries and then simplifying them. The resulting polygons are
finally converted to convex polygons which makes them perfect for
pathfinding and spatial reasoning about the level.
The toolset code is located in the Recast folder and demo application using the Recast
toolset is located in the RecastDemo folder.
The project files with this distribution can be compiled with Microsoft Visual C++ 2008
(you can download it for free) and XCode 3.1.
Detour
Recast is accompanied with Detour, path-finding and spatial reasoning toolkit. You can use any navigation mesh with Detour, but of course the data generated with Recast fits perfectly.
Detour offers simple static navigation mesh which is suitable for many simple cases, as well as tiled navigation mesh which allows you to plug in and out pieces of the mesh. The tiled mesh allows to create systems where you stream new navigation data in and out as the player progresses the level, or you may regenerate tiles as the world changes.
Latest code available at http://code.google.com/p/recastnavigation/
--
Release Notes
----------------
* Recast 1.4
Released August 24th, 2009
- Added detail height mesh generation (RecastDetailMesh.cpp) for single,
tiled statmeshes as well as tilemesh.
- Added feature to contour tracing which detects extra vertices along
tile edges which should be removed later.
- Changed the tiled stat mesh preprocess, so that it first generated
polymeshes per tile and finally combines them.
- Fixed bug in the GUI code where invisible buttons could be pressed.
----------------
* Recast 1.31
Released July 24th, 2009
- Better cost and heuristic functions.
- Fixed tile navmesh raycast on tile borders.
----------------
* Recast 1.3
Released July 14th, 2009
- Added dtTileNavMesh which allows to dynamically add and remove navmesh pieces at runtime.
- Renamed stat navmesh types to dtStat* (i.e. dtPoly is now dtStatPoly).
- Moved common code used by tile and stat navmesh to DetourNode.h/cpp and DetourCommon.h/cpp.
- Refactores the demo code.
----------------
* Recast 1.2
Released June 17th, 2009
- Added tiled mesh generation. The tiled generation allows to generate navigation for
much larger worlds, it removes some of the artifacts that comes from distance fields
in open areas, and allows later streaming and dynamic runtime generation
- Improved and added some debug draw modes
- API change: The helper function rcBuildNavMesh does not exists anymore,
had to change few internal things to cope with the tiled processing,
similar API functionality will be added later once the tiled process matures
- The demo is getting way too complicated, need to split demos
- Fixed several filtering functions so that the mesh is tighter to the geometry,
sometimes there could be up error up to tow voxel units close to walls,
now it should be just one.
----------------
* Recast 1.1
Released April 11th, 2009
This is the first release of Detour.
----------------
* Recast 1.0
Released March 29th, 2009
This is the first release of Recast.
The process is not always as robust as I would wish. The watershed phase sometimes swallows tiny islands
which are close to edges. These droppings are handled in rcBuildContours, but the code is not
particularly robust either.
Another non-robust case is when portal contours (contours shared between two regions) are always
assumed to be straight. That can lead to overlapping contours specially when the level has
large open areas.
Mikko Mononen
memon@inside.org

@ -0,0 +1,500 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_H
#define RECAST_H
// The units of the parameters are specified in parenthesis as follows:
// (vx) voxels, (wu) world units
struct rcConfig
{
int width, height; // Dimensions of the rasterized heighfield (vx)
int tileSize; // Width and Height of a tile (vx)
int borderSize; // Non-navigable Border around the heightfield (vx)
float cs, ch; // Grid cell size and height (wu)
float bmin[3], bmax[3]; // Grid bounds (wu)
float walkableSlopeAngle; // Maximum walkble slope angle in degrees.
int walkableHeight; // Minimum height where the agent can still walk (vx)
int walkableClimb; // Maximum height between grid cells the agent can climb (vx)
int walkableRadius; // Radius of the agent in cells (vx)
int maxEdgeLen; // Maximum contour edge length (vx)
float maxSimplificationError; // Maximum distance error from contour to cells (vx)
int minRegionSize; // Minimum regions size. Smaller regions will be deleted (vx)
int mergeRegionSize; // Minimum regions size. Smaller regions will be merged (vx)
int maxVertsPerPoly; // Max number of vertices per polygon
float detailSampleDist; // Detail mesh sample spacing.
float detailSampleMaxError; // Detail mesh simplification max sample error.
};
// Heightfield span.
struct rcSpan
{
unsigned int smin : 15; // Span min height.
unsigned int smax : 15; // Span max height.
unsigned int flags : 2; // Span flags.
rcSpan* next; // Next span in column.
};
static const int RC_SPANS_PER_POOL = 2048;
// Memory pool used for quick span allocation.
struct rcSpanPool
{
rcSpanPool* next; // Pointer to next pool.
rcSpan items[1]; // Array of spans (size RC_SPANS_PER_POOL).
};
// Dynamic span-heightfield.
struct rcHeightfield
{
inline rcHeightfield() : width(0), height(0), spans(0), pools(0), freelist(0) {}
inline ~rcHeightfield()
{
// Delete span array.
delete [] spans;
// Delete span pools.
while (pools)
{
rcSpanPool* next = pools->next;
delete [] reinterpret_cast<unsigned char*>(pools);
pools = next;
}
}
int width, height; // Dimension of the heightfield.
float bmin[3], bmax[3]; // Bounding box of the heightfield
float cs, ch; // Cell size and height.
rcSpan** spans; // Heightfield of spans (width*height).
rcSpanPool* pools; // Linked list of span pools.
rcSpan* freelist; // Pointer to next free span.
};
struct rcCompactCell
{
unsigned int index : 24; // Index to first span in column.
unsigned int count : 8; // Number of spans in this column.
};
struct rcCompactSpan
{
unsigned short y; // Bottom coordinate of the span.
unsigned short reg; // Region ID
unsigned short dist; // Distance to border
unsigned short con; // Connections to neighbour cells.
unsigned char h; // Height of the span.
unsigned char flags; // Flags.
};
// Compact static heightfield.
struct rcCompactHeightfield
{
inline rcCompactHeightfield() : maxDistance(0), maxRegions(0), cells(0), spans(0) {}
inline ~rcCompactHeightfield() { delete [] cells; delete [] spans; }
int width, height; // Width and height of the heighfield.
int spanCount; // Number of spans in the heightfield.
int walkableHeight, walkableClimb; // Agent properties.
unsigned short maxDistance; // Maximum distance value stored in heightfield.
unsigned short maxRegions; // Maximum Region Id stored in heightfield.
float bmin[3], bmax[3]; // Bounding box of the heightfield.
float cs, ch; // Cell size and height.
rcCompactCell* cells; // Pointer to width*height cells.
rcCompactSpan* spans; // Pointer to spans.
};
struct rcContour
{
inline rcContour() : verts(0), nverts(0), rverts(0), nrverts(0) { }
inline ~rcContour() { delete [] verts; delete [] rverts; }
int* verts; // Vertex coordinates, each vertex contains 4 components.
int nverts; // Number of vertices.
int* rverts; // Raw vertex coordinates, each vertex contains 4 components.
int nrverts; // Number of raw vertices.
unsigned short reg; // Region ID of the contour.
};
struct rcContourSet
{
inline rcContourSet() : conts(0), nconts(0) {}
inline ~rcContourSet() { delete [] conts; }
rcContour* conts; // Pointer to all contours.
int nconts; // Number of contours.
float bmin[3], bmax[3]; // Bounding box of the heightfield.
float cs, ch; // Cell size and height.
};
// Polymesh store a connected mesh of polygons.
// The polygons are store in an array where each polygons takes
// 'nvp*2' elements. The first 'nvp' elements are indices to vertices
// and the second 'nvp' elements are indices to neighbour polygons.
// If a polygona has less than 'bvp' vertices, the remaining indices
// are set os 0xffff. If an polygon edge does not have a neighbour
// the neighbour index is set to 0xffff.
// Vertices can be transformed into world space as follows:
// x = bmin[0] + verts[i*3+0]*cs;
// y = bmin[1] + verts[i*3+1]*ch;
// z = bmin[2] + verts[i*3+2]*cs;
struct rcPolyMesh
{
inline rcPolyMesh() : verts(0), polys(0), regs(0), nverts(0), npolys(0), nvp(3) {}
inline ~rcPolyMesh() { delete [] verts; delete [] polys; delete [] regs; }
unsigned short* verts; // Vertices of the mesh, 3 elements per vertex.
unsigned short* polys; // Polygons of the mesh, nvp*2 elements per polygon.
unsigned short* regs; // Regions of the polygons.
int nverts; // Number of vertices.
int npolys; // Number of polygons.
int nvp; // Max number of vertices per polygon.
float bmin[3], bmax[3]; // Bounding box of the mesh.
float cs, ch; // Cell size and height.
};
// Detail mesh generated from a rcPolyMesh.
// Each submesh represents a polygon in the polymesh and they are stored in
// excatly same order. Each submesh is described as 4 values:
// base vertex, vertex count, base triangle, triangle count. That is,
// const unsigned char* t = &dtl.tris[(tbase+i)*3]; and
// const float* v = &dtl.verts[(vbase+t[j])*3];
// If the input polygon has 'n' vertices, those vertices are first in the
// submesh vertex list. This allows to compres the mesh by not storing the
// first vertices and using the polymesh vertices instead.
struct rcPolyMeshDetail
{
inline rcPolyMeshDetail() :
meshes(0), verts(0), tris(0),
nmeshes(0), nverts(0), ntris(0) {}
inline ~rcPolyMeshDetail()
{
delete [] meshes; delete [] verts; delete [] tris;
}
unsigned short* meshes; // Pointer to all mesh data.
float* verts; // Pointer to all vertex data.
unsigned char* tris; // Pointer to all triangle data.
int nmeshes; // Number of meshes.
int nverts; // Number of total vertices.
int ntris; // Number of triangles.
};
// Simple dynamic array ints.
class rcIntArray
{
int* m_data;
int m_size, m_cap;
public:
inline rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
inline rcIntArray(int n) : m_data(0), m_size(0), m_cap(n) { m_data = new int[n]; }
inline ~rcIntArray() { delete [] m_data; }
void resize(int n);
inline void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
inline int pop() { if (m_size > 0) m_size--; return m_data[m_size]; }
inline const int& operator[](int i) const { return m_data[i]; }
inline int& operator[](int i) { return m_data[i]; }
inline int size() const { return m_size; }
};
enum rcSpanFlags
{
RC_WALKABLE = 0x01,
RC_REACHABLE = 0x02,
};
// If heightfield region ID has the following bit set, the region is on border area
// and excluded from many calculations.
static const unsigned short RC_BORDER_REG = 0x8000;
// If contour region ID has the following bit set, the vertex will be later
// removed in order to match the segments and vertices at tile boundaries.
static const int RC_BORDER_VERTEX = 0x10000;
// Compact span neighbour helpers.
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
return (s.con >> (dir*4)) & 0xf;
}
inline int rcGetDirOffsetX(int dir)
{
const int offset[4] = { -1, 0, 1, 0, };
return offset[dir&0x03];
}
inline int rcGetDirOffsetY(int dir)
{
const int offset[4] = { 0, 1, 0, -1 };
return offset[dir&0x03];
}
// Common helper functions
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
template<class T> inline T rcSqr(T a) { return a*a; }
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
// Common vector helper functions.
inline void vcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
inline float vdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
inline void vmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
inline void vadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
inline void vsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
inline void vmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
mn[1] = rcMin(mn[1], v[1]);
mn[2] = rcMin(mn[2], v[2]);
}
inline void vmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
mx[1] = rcMax(mx[1], v[1]);
mx[2] = rcMax(mx[2], v[2]);
}
inline void vcopy(float* dest, const float* v)
{
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
}
inline float vdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return sqrtf(dx*dx + dy*dy + dz*dz);
}
inline float vdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
inline void vnormalize(float* v)
{
float d = 1.0f / sqrtf(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
inline bool vequal(const float* p0, const float* p1)
{
static const float thr = rcSqr(1.0f/16384.0f);
const float d = vdistSqr(p0, p1);
return d < thr;
}
// Calculated bounding box of array of vertices.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// bmin, bmax - (out) bounding box
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
// Calculates grid size based on bounding box and grid cell size.
// Params:
// bmin, bmax - (in) bounding box
// cs - (in) grid cell size
// w - (out) grid width
// h - (out) grid height
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
// Creates and initializes new heightfield.
// Params:
// hf - (in/out) heightfield to initialize.
// width - (in) width of the heightfield.
// height - (in) height of the heightfield.
// bmin, bmax - (in) bounding box of the heightfield
// cs - (in) grid cell size
// ch - (in) grid cell height
bool rcCreateHeightfield(rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
// Sets the WALKABLE flag for every triangle whose slope is below
// the maximun walkable slope angle.
// Params:
// walkableSlopeAngle - (in) maximun slope angle in degrees.
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// nt - (in) triangle count
// flags - (out) array of triangle flags
void rcMarkWalkableTriangles(const float walkableSlopeAngle,
const float* verts, int nv,
const int* tris, int nt,
unsigned char* flags);
// Rasterizes a triangle into heightfield spans.
// Params:
// v0,v1,v2 - (in) the vertices of the triangle.
// flags - (in) triangle flags (uses WALKABLE)
// solid - (in) heighfield where the triangle is rasterized
void rcRasterizeTriangle(const float* v0, const float* v1, const float* v2,
unsigned char flags, rcHeightfield& solid);
// Rasterizes the triangles into heightfield spans.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// norms - (in) array of triangle normals
// flags - (in) array of triangle flags (uses WALKABLE)
// nt - (in) triangle count
// solid - (in) heighfield where the triangles are rasterized
void rcRasterizeTriangles(const float* verts, int nv,
const int* tris, const unsigned char* flags, int nt,
rcHeightfield& solid);
// Removes WALKABLE flag from all spans that are at ledges. This filtering
// removes possible overestimation of the conservative voxelization so that
// the resulting mesh will not have regions hanging in air over ledges.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// solid - (in/out) heightfield describing the solid space
void rcFilterLedgeSpans(const int walkableHeight,
const int walkableClimb,
rcHeightfield& solid);
// Removes WALKABLE flag from all spans which have smaller than
// 'walkableHeight' clearane above them.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// solid - (in/out) heightfield describing the solid space
void rcFilterWalkableLowHeightSpans(int walkableHeight,
rcHeightfield& solid);
// Marks spans which are reachable from any of the topmost spans.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// solid - (in/out) heightfield describing the solid space
// Returns false if operation ran out of memory.
bool rcMarkReachableSpans(const int walkableHeight,
const int walkableClimb,
rcHeightfield& solid);
// Builds compact representation of the heightfield.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// hf - (in) heightfield to be compacted
// chf - (out) compact heightfield representing the open space.
// Returns false if operation ran out of memory.
bool rcBuildCompactHeightfield(const int walkableHeight, const int walkableClimb,
unsigned char flags,
rcHeightfield& hf,
rcCompactHeightfield& chf);
// Builds distance field and stores it into the combat heightfield.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// Returns false if operation ran out of memory.
bool rcBuildDistanceField(rcCompactHeightfield& chf);
// Divides the walkable heighfied into simple regions.
// Each region has only one contour and no overlaps.
// The regions are stored in the compact heightfield 'reg' field.
// The regions will be shrinked by the radius of the agent.
// The process sometimes creates small regions. The parameter
// 'minRegionSize' specifies the smallest allowed regions size.
// If the area of a regions is smaller than allowed, the regions is
// removed or merged to neighbour region.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// walkableRadius - (in) the radius of the agent.
// minRegionSize - (in) the smallest allowed regions size.
// maxMergeRegionSize - (in) the largest allowed regions size which can be merged.
// Returns false if operation ran out of memory.
bool rcBuildRegions(rcCompactHeightfield& chf,
int walkableRadius, int borderSize,
int minRegionSize, int mergeRegionSize);
// Builds simplified contours from the regions outlines.
// Params:
// chf - (in) compact heightfield which has regions set.
// maxError - (in) maximum allowed distance between simplified countour and cells.
// maxEdgeLen - (in) maximum allowed contour edge length in cells.
// cset - (out) Resulting contour set.
// Returns false if operation ran out of memory.
bool rcBuildContours(rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset);
// Builds connected convex polygon mesh from contour polygons.
// Params:
// cset - (in) contour set.
// nvp - (in) maximum number of vertices per polygon.
// mesh - (out) poly mesh.
// Returns false if operation ran out of memory.
bool rcBuildPolyMesh(rcContourSet& cset, int nvp, rcPolyMesh& mesh);
bool rcMergePolyMeshes(rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
// Builds detail triangle mesh for each polygon in the poly mesh.
// Params:
// mesh - (in) poly mesh to detail.
// chf - (in) compacy height field, used to query height for new vertices.
// sampleDist - (in) spacing between height samples used to generate more detail into mesh.
// sampleMaxError - (in) maximum allowed distance between simplified detail mesh and height sample.
// pmdtl - (out) detail mesh.
// Returns false if operation ran out of memory.
bool rcBuildPolyMeshDetail(const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
bool rcMergePolyMeshDetails(rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
#endif // RECAST_H

@ -0,0 +1,59 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_DEBUGDRAW_H
#define RECAST_DEBUGDRAW_H
inline int bit(int a, int b)
{
return (a & (1 << b)) >> b;
}
inline void intToCol(int i, float* col)
{
int r = bit(i, 0) + bit(i, 3) * 2 + 1;
int g = bit(i, 1) + bit(i, 4) * 2 + 1;
int b = bit(i, 2) + bit(i, 5) * 2 + 1;
col[0] = 1 - r*63.0f/255.0f;
col[1] = 1 - g*63.0f/255.0f;
col[2] = 1 - b*63.0f/255.0f;
}
void rcDebugDrawHeightfieldSolid(const struct rcHeightfield& hf);
void rcDebugDrawHeightfieldWalkable(const struct rcHeightfield& hf);
void rcDebugDrawMesh(const float* verts, int nverts, const int* tris, const float* normals, int ntris, const unsigned char* flags);
void rcDebugDrawMeshSlope(const float* verts, int nverts, const int* tris, const float* normals, int ntris, const float walkableSlopeAngle);
void rcDebugDrawCompactHeightfieldSolid(const struct rcCompactHeightfield& chf);
void rcDebugDrawCompactHeightfieldRegions(const struct rcCompactHeightfield& chf);
void rcDebugDrawCompactHeightfieldDistance(const struct rcCompactHeightfield& chf);
void rcDebugDrawRegionConnections(const struct rcContourSet& cset, const float alpha = 1.0f);
void rcDebugDrawRawContours(const struct rcContourSet& cset, const float alpha = 1.0f);
void rcDebugDrawContours(const struct rcContourSet& cset, const float alpha = 1.0f);
void rcDebugDrawPolyMesh(const struct rcPolyMesh& mesh);
void rcDebugDrawPolyMeshDetail(const struct rcPolyMeshDetail& dmesh);
void rcDebugDrawCylinderWire(float minx, float miny, float minz, float maxx, float maxy, float maxz, const float* col);
void rcDebugDrawBoxWire(float minx, float miny, float minz, float maxx, float maxy, float maxz, const float* col);
void rcDebugDrawBox(float minx, float miny, float minz, float maxx, float maxy, float maxz,
const float* col1, const float* col2);
void rcDrawArc(const float* p0, const float* p1);
#endif // RECAST_DEBUGDRAW_H

@ -0,0 +1,80 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_LOG_H
#define RECAST_LOG_H
enum rcLogCategory
{
RC_LOG_PROGRESS = 1,
RC_LOG_WARNING,
RC_LOG_ERROR,
};
class rcLog
{
public:
rcLog();
~rcLog();
void log(rcLogCategory category, const char* format, ...);
inline void clear() { m_messageCount = 0; m_textPoolSize = 0; }
inline int getMessageCount() const { return m_messageCount; }
inline char getMessageType(int i) const { return *m_messages[i]; }
inline const char* getMessageText(int i) const { return m_messages[i]+1; }
private:
static const int MAX_MESSAGES = 1000;
const char* m_messages[MAX_MESSAGES];
int m_messageCount;
static const int TEXT_POOL_SIZE = 8000;
char m_textPool[TEXT_POOL_SIZE];
int m_textPoolSize;
};
struct rcBuildTimes
{
int rasterizeTriangles;
int buildCompact;
int buildContours;
int buildContoursTrace;
int buildContoursSimplify;
int filterBorder;
int filterWalkable;
int filterMarkReachable;
int buildPolymesh;
int buildDistanceField;
int buildDistanceFieldDist;
int buildDistanceFieldBlur;
int buildRegions;
int buildRegionsReg;
int buildRegionsExp;
int buildRegionsFlood;
int buildRegionsFilter;
int buildDetailMesh;
int mergePolyMesh;
int mergePolyMeshDetail;
};
void rcSetLog(rcLog* log);
rcLog* rcGetLog();
void rcSetBuildTimes(rcBuildTimes* btimes);
rcBuildTimes* rcGetBuildTimes();
#endif // RECAST_LOG_H

@ -0,0 +1,31 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_TIMER_H
#define RECAST_TIMER_H
#ifdef __GNUC__
#include <stdint.h>
typedef int64_t rcTimeVal;
#else
typedef __int64 rcTimeVal;
#endif
rcTimeVal rcGetPerformanceTimer();
int rcGetDeltaTimeUsec(rcTimeVal start, rcTimeVal end);
#endif // RECAST_TIMER_H

@ -0,0 +1,272 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
void rcIntArray::resize(int n)
{
if (n > m_cap)
{
if (!m_cap) m_cap = 8;
while (m_cap < n) m_cap *= 2;
int* newData = new int[m_cap];
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
delete [] m_data;
m_data = newData;
}
m_size = n;
}
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
{
// Calculate bounding box.
vcopy(bmin, verts);
vcopy(bmax, verts);
for (int i = 1; i < nv; ++i)
{
const float* v = &verts[i*3];
vmin(bmin, v);
vmax(bmax, v);
}
}
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h)
{
*w = (int)((bmax[0] - bmin[0])/cs+0.5f);
*h = (int)((bmax[2] - bmin[2])/cs+0.5f);
}
bool rcCreateHeightfield(rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch)
{
hf.width = width;
hf.height = height;
hf.spans = new rcSpan*[hf.width*hf.height];
vcopy(hf.bmin, bmin);
vcopy(hf.bmax, bmax);
hf.cs = cs;
hf.ch = ch;
if (!hf.spans)
return false;
memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height);
return true;
}
static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm)
{
float e0[3], e1[3];
vsub(e0, v1, v0);
vsub(e1, v2, v0);
vcross(norm, e0, e1);
vnormalize(norm);
}
void rcMarkWalkableTriangles(const float walkableSlopeAngle,
const float* verts, int nv,
const int* tris, int nt,
unsigned char* flags)
{
const float walkableThr = cosf(walkableSlopeAngle/180.0f*(float)M_PI);
float norm[3];
for (int i = 0; i < nt; ++i)
{
const int* tri = &tris[i*3];
calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
// Check if the face is walkable.
if (norm[1] > walkableThr)
flags[i] |= RC_WALKABLE;
}
}
static int getSpanCount(unsigned char flags, rcHeightfield& hf)
{
const int w = hf.width;
const int h = hf.height;
int spanCount = 0;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next)
{
if (s->flags == flags)
spanCount++;
}
}
}
return spanCount;
}
inline void setCon(rcCompactSpan& s, int dir, int i)
{
s.con &= ~(0xf << (dir*4));
s.con |= (i&0xf) << (dir*4);
}
bool rcBuildCompactHeightfield(const int walkableHeight, const int walkableClimb,
unsigned char flags, rcHeightfield& hf,
rcCompactHeightfield& chf)
{
rcTimeVal startTime = rcGetPerformanceTimer();
const int w = hf.width;
const int h = hf.height;
const int spanCount = getSpanCount(flags, hf);
// Fill in header.
chf.width = w;
chf.height = h;
chf.spanCount = spanCount;
chf.walkableHeight = walkableHeight;
chf.walkableClimb = walkableClimb;
chf.maxRegions = 0;
vcopy(chf.bmin, hf.bmin);
vcopy(chf.bmax, hf.bmax);
chf.bmax[1] += walkableHeight*hf.ch;
chf.cs = hf.cs;
chf.ch = hf.ch;
chf.cells = new rcCompactCell[w*h];
if (!chf.cells)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
return false;
}
memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
chf.spans = new rcCompactSpan[spanCount];
if (!chf.spans)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
return false;
}
memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
const int MAX_HEIGHT = 0xffff;
// Fill in cells and spans.
int idx = 0;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcSpan* s = hf.spans[x + y*w];
// If there are no spans at this cell, just leave the data to index=0, count=0.
if (!s) continue;
rcCompactCell& c = chf.cells[x+y*w];
c.index = idx;
c.count = 0;
while (s)
{
if (s->flags == flags)
{
const int bot = (int)s->smax;
const int top = (int)s->next ? (int)s->next->smin : MAX_HEIGHT;
chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
idx++;
c.count++;
}
s = s->next;
}
}
}
// Find neighbour connections.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
rcCompactSpan& s = chf.spans[i];
for (int dir = 0; dir < 4; ++dir)
{
setCon(s, dir, 0xf);
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
// First check that the neighbour cell is in bounds.
if (nx < 0 || ny < 0 || nx >= w || ny >= h)
continue;
// Iterate over all neighbour spans and check if any of the is
// accessible from current cell.
const rcCompactCell& nc = chf.cells[nx+ny*w];
for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
{
const rcCompactSpan& ns = chf.spans[k];
const int bot = rcMax(s.y, ns.y);
const int top = rcMin(s.y+s.h, ns.y+ns.h);
// Check that the gap between the spans is walkable,
// and that the climb height between the gaps is not too high.
if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
{
// Mark direction as walkable.
setCon(s, dir, k - (int)nc.index);
break;
}
}
}
}
}
}
rcTimeVal endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->buildCompact += rcGetDeltaTimeUsec(startTime, endTime);
return true;
}
static int getHeightfieldMemoryUsage(const rcHeightfield& hf)
{
int size = 0;
size += sizeof(hf);
size += hf.width * hf.height * sizeof(rcSpan*);
rcSpanPool* pool = hf.pools;
while (pool)
{
size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
pool = pool->next;
}
return size;
}
static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
{
int size = 0;
size += sizeof(rcCompactHeightfield);
size += sizeof(rcCompactSpan) * chf.spanCount;
size += sizeof(rcCompactCell) * chf.width * chf.height;
return size;
}

@ -0,0 +1,732 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
static int getCornerHeight(int x, int y, int i, int dir,
const rcCompactHeightfield& chf,
bool& isBorderVertex)
{
const rcCompactSpan& s = chf.spans[i];
int ch = (int)s.y;
int dirp = (dir+1) & 0x3;
unsigned short regs[4] = {0,0,0,0};
regs[0] = s.reg;
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
const rcCompactSpan& as = chf.spans[ai];
ch = rcMax(ch, (int)as.y);
regs[1] = as.reg;
if (rcGetCon(as, dirp) != 0xf)
{
const int ax2 = ax + rcGetDirOffsetX(dirp);
const int ay2 = ay + rcGetDirOffsetY(dirp);
const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
const rcCompactSpan& as2 = chf.spans[ai2];
ch = rcMax(ch, (int)as2.y);
regs[2] = as2.reg;
}
}
if (rcGetCon(s, dirp) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dirp);
const int ay = y + rcGetDirOffsetY(dirp);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
const rcCompactSpan& as = chf.spans[ai];
ch = rcMax(ch, (int)as.y);
regs[3] = as.reg;
if (rcGetCon(as, dir) != 0xf)
{
const int ax2 = ax + rcGetDirOffsetX(dir);
const int ay2 = ay + rcGetDirOffsetY(dir);
const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
const rcCompactSpan& as2 = chf.spans[ai2];
ch = rcMax(ch, (int)as2.y);
regs[2] = as2.reg;
}
}
// Check if the vertex is special edge vertex, these vertices will be removed later.
for (int j = 0; j < 4; ++j)
{
const int a = j;
const int b = (j+1) & 0x3;
const int c = (j+2) & 0x3;
const int d = (j+3) & 0x3;
// The vertex is a border vertex there are two same exterior cells in a row,
// followed by two interior cells and none of the regions are out of bounds.
const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
if (twoSameExts && twoInts && noZeros)
{
isBorderVertex = true;
break;
}
}
return ch;
}
static void walkContour(int x, int y, int i,
rcCompactHeightfield& chf,
unsigned char* flags, rcIntArray& points)
{
// Choose the first non-connected edge
unsigned char dir = 0;
while ((flags[i] & (1 << dir)) == 0)
dir++;
unsigned char startDir = dir;
int starti = i;
int iter = 0;
while (++iter < 40000)
{
if (flags[i] & (1 << dir))
{
// Choose the edge corner
bool isBorderVertex = false;
int px = x;
int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
int pz = y;
switch(dir)
{
case 0: pz++; break;
case 1: px++; pz++; break;
case 2: px++; break;
}
int r = 0;
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
const rcCompactSpan& as = chf.spans[ai];
r = (int)as.reg;
}
if (isBorderVertex)
r |= RC_BORDER_VERTEX;
points.push(px);
points.push(py);
points.push(pz);
points.push(r);
flags[i] &= ~(1 << dir); // Remove visited edges
dir = (dir+1) & 0x3; // Rotate CW
}
else
{
int ni = -1;
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, dir) != 0xf)
{
const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
ni = (int)nc.index + rcGetCon(s, dir);
}
if (ni == -1)
{
// Should not happen.
return;
}
x = nx;
y = ny;
i = ni;
dir = (dir+3) & 0x3; // Rotate CCW
}
if (starti == i && startDir == dir)
{
break;
}
}
}
static float distancePtSeg(int x, int y, int z,
int px, int py, int pz,
int qx, int qy, int qz)
{
/* float pqx = (float)(qx - px);
float pqy = (float)(qy - py);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
float dy = (float)(y - py);
float dz = (float)(z - pz);
float d = pqx*pqx + pqy*pqy + pqz*pqz;
float t = pqx*dx + pqy*dy + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = px + t*pqx - x;
dy = py + t*pqy - y;
dz = pz + t*pqz - z;
return dx*dx + dy*dy + dz*dz;*/
float pqx = (float)(qx - px);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
float dz = (float)(z - pz);
float d = pqx*pqx + pqz*pqz;
float t = pqx*dx + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = px + t*pqx - x;
dz = pz + t*pqz - z;
return dx*dx + dz*dz;
}
static void simplifyContour(rcIntArray& points, rcIntArray& simplified, float maxError, int maxEdgeLen)
{
// Add initial points.
bool noConnections = true;
for (int i = 0; i < points.size(); i += 4)
{
if ((points[i+3] & 0xffff) != 0)
{
noConnections = false;
break;
}
}
if (noConnections)
{
// If there is no connections at all,
// create some initial points for the simplification process.
// Find lower-left and upper-right vertices of the contour.
int llx = points[0];
int lly = points[1];
int llz = points[2];
int lli = 0;
int urx = points[0];
int ury = points[1];
int urz = points[2];
int uri = 0;
for (int i = 0; i < points.size(); i += 4)
{
int x = points[i+0];
int y = points[i+1];
int z = points[i+2];
if (x < llx || (x == llx && z < llz))
{
llx = x;
lly = y;
llz = z;
lli = i/4;
}
if (x >= urx || (x == urx && z > urz))
{
urx = x;
ury = y;
urz = z;
uri = i/4;
}
}
simplified.push(llx);
simplified.push(lly);
simplified.push(llz);
simplified.push(lli);
simplified.push(urx);
simplified.push(ury);
simplified.push(urz);
simplified.push(uri);
}
else
{
// The contour has some portals to other regions.
// Add a new point to every location where the region changes.
for (int i = 0, ni = points.size()/4; i < ni; ++i)
{
int ii = (i+1) % ni;
if ((points[i*4+3] & 0xffff) != (points[ii*4+3] & 0xffff))
{
simplified.push(points[i*4+0]);
simplified.push(points[i*4+1]);
simplified.push(points[i*4+2]);
simplified.push(i);
}
}
}
// Add points until all raw points are within
// error tolerance to the simplified shape.
const int pn = points.size()/4;
for (int i = 0; i < simplified.size()/4; )
{
int ii = (i+1) % (simplified.size()/4);
int ax = simplified[i*4+0];
int ay = simplified[i*4+1];
int az = simplified[i*4+2];
int ai = simplified[i*4+3];
int bx = simplified[ii*4+0];
int by = simplified[ii*4+1];
int bz = simplified[ii*4+2];
int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
float maxd = 0;
int maxi = -1;
int ci = (ai+1) % pn;
// Tesselate only outer edges.
if ((points[ci*4+3] & 0xffff) == 0)
{
while (ci != bi)
{
float d = distancePtSeg(points[ci*4+0], points[ci*4+1]/4, points[ci*4+2],
ax, ay/4, az, bx, by/4, bz);
if (d > maxd)
{
maxd = d;
maxi = ci;
}
ci = (ci+1) % pn;
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (maxi != -1 && maxd > (maxError*maxError))
{
// Add space for the new point.
simplified.resize(simplified.size()+4);
int n = simplified.size()/4;
for (int j = n-1; j > i; --j)
{
simplified[j*4+0] = simplified[(j-1)*4+0];
simplified[j*4+1] = simplified[(j-1)*4+1];
simplified[j*4+2] = simplified[(j-1)*4+2];
simplified[j*4+3] = simplified[(j-1)*4+3];
}
// Add the point.
simplified[(i+1)*4+0] = points[maxi*4+0];
simplified[(i+1)*4+1] = points[maxi*4+1];
simplified[(i+1)*4+2] = points[maxi*4+2];
simplified[(i+1)*4+3] = maxi;
}
else
{
++i;
}
}
// Split too long edges.
if (maxEdgeLen > 0)
{
for (int i = 0; i < simplified.size()/4; )
{
int ii = (i+1) % (simplified.size()/4);
int ax = simplified[i*4+0];
int az = simplified[i*4+2];
int ai = simplified[i*4+3];
int bx = simplified[ii*4+0];
int bz = simplified[ii*4+2];
int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
int maxi = -1;
int ci = (ai+1) % pn;
// Tesselate only outer edges.
if ((points[ci*4+3] & 0xffff) == 0)
{
int dx = bx - ax;
int dz = bz - az;
if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
{
int n = bi < ai ? (bi+pn - ai) : (bi - ai);
maxi = (ai + n/2) % pn;
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (maxi != -1)
{
// Add space for the new point.
simplified.resize(simplified.size()+4);
int n = simplified.size()/4;
for (int j = n-1; j > i; --j)
{
simplified[j*4+0] = simplified[(j-1)*4+0];
simplified[j*4+1] = simplified[(j-1)*4+1];
simplified[j*4+2] = simplified[(j-1)*4+2];
simplified[j*4+3] = simplified[(j-1)*4+3];
}
// Add the point.
simplified[(i+1)*4+0] = points[maxi*4+0];
simplified[(i+1)*4+1] = points[maxi*4+1];
simplified[(i+1)*4+2] = points[maxi*4+2];
simplified[(i+1)*4+3] = maxi;
}
else
{
++i;
}
}
}
for (int i = 0; i < simplified.size()/4; ++i)
{
// The edge vertex flag is take from the current raw point,
// and the neighbour region is take from the next raw point.
const int ai = (simplified[i*4+3]+1) % pn;
const int bi = simplified[i*4+3];
simplified[i*4+3] = (points[ai*4+3] & 0xffff) | (points[bi*4+3] & RC_BORDER_VERTEX);
}
}
static void removeDegenerateSegments(rcIntArray& simplified)
{
// Remove adjacent vertices which are equal on xz-plane,
// or else the triangulator will get confused.
for (int i = 0; i < simplified.size()/4; ++i)
{
int ni = i+1;
if (ni >= (simplified.size()/4))
ni = 0;
if (simplified[i*4+0] == simplified[ni*4+0] &&
simplified[i*4+2] == simplified[ni*4+2])
{
// Degenerate segment, remove.
for (int j = i; j < simplified.size()/4-1; ++j)
{
simplified[j*4+0] = simplified[(j+1)*4+0];
simplified[j*4+1] = simplified[(j+1)*4+1];
simplified[j*4+2] = simplified[(j+1)*4+2];
simplified[j*4+3] = simplified[(j+1)*4+3];
}
simplified.pop();
}
}
}
static int calcAreaOfPolygon2D(const int* verts, const int nverts)
{
int area = 0;
for (int i = 0, j = nverts-1; i < nverts; j=i++)
{
const int* vi = &verts[i*4];
const int* vj = &verts[j*4];
area += vi[0] * vj[2] - vj[0] * vi[2];
}
return (area+1) / 2;
}
static void getClosestIndices(const int* vertsa, const int nvertsa,
const int* vertsb, const int nvertsb,
int& ia, int& ib)
{
int closestDist = 0xfffffff;
for (int i = 0; i < nvertsa; ++i)
{
const int* va = &vertsa[i*4];
for (int j = 0; j < nvertsb; ++j)
{
const int* vb = &vertsb[j*4];
const int dx = vb[0] - va[0];
const int dz = vb[2] - va[2];
const int d = dx*dx + dz*dz;
if (d < closestDist)
{
ia = i;
ib = j;
closestDist = d;
}
}
}
}
static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
{
const int maxVerts = ca.nverts + cb.nverts + 2;
int* verts = new int[maxVerts*4];
if (!verts)
return false;
int nv = 0;
// Copy contour A.
for (int i = 0; i <= ca.nverts; ++i)
{
int* dst = &verts[nv*4];
const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
nv++;
}
// Copy contour B
for (int i = 0; i <= cb.nverts; ++i)
{
int* dst = &verts[nv*4];
const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
nv++;
}
delete [] ca.verts;
ca.verts = verts;
ca.nverts = nv;
delete [] cb.verts;
cb.verts = 0;
cb.nverts = 0;
return true;
}
bool rcBuildContours(rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset)
{
const int w = chf.width;
const int h = chf.height;
rcTimeVal startTime = rcGetPerformanceTimer();
vcopy(cset.bmin, chf.bmin);
vcopy(cset.bmax, chf.bmax);
cset.cs = chf.cs;
cset.ch = chf.ch;
const int maxContours = chf.maxRegions*2;
cset.conts = new rcContour[maxContours];
if (!cset.conts)
return false;
cset.nconts = 0;
unsigned char* flags = new unsigned char[chf.spanCount];
if (!flags)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags'.");
return false;
}
rcTimeVal traceStartTime = rcGetPerformanceTimer();
// Mark boundaries.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
unsigned char res = 0;
const rcCompactSpan& s = chf.spans[i];
if (!s.reg || (s.reg & RC_BORDER_REG))
{
flags[i] = 0;
continue;
}
for (int dir = 0; dir < 4; ++dir)
{
unsigned short r = 0;
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
const rcCompactSpan& as = chf.spans[ai];
r = as.reg;
}
if (r == s.reg)
res |= (1 << dir);
}
flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
}
}
}
rcTimeVal traceEndTime = rcGetPerformanceTimer();
rcTimeVal simplifyStartTime = rcGetPerformanceTimer();
rcIntArray verts(256);
rcIntArray simplified(64);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (flags[i] == 0 || flags[i] == 0xf)
{
flags[i] = 0;
continue;
}
unsigned short reg = chf.spans[i].reg;
if (!reg || (reg & RC_BORDER_REG))
continue;
verts.resize(0);
simplified.resize(0);
walkContour(x, y, i, chf, flags, verts);
simplifyContour(verts, simplified, maxError, maxEdgeLen);
removeDegenerateSegments(simplified);
// Store region->contour remap info.
// Create contour.
if (simplified.size()/4 >= 3)
{
if (cset.nconts >= maxContours)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildContours: Too many contours %d, max %d.", cset.nconts, maxContours);
return false;
}
rcContour* cont = &cset.conts[cset.nconts++];
cont->nverts = simplified.size()/4;
cont->verts = new int[cont->nverts*4];
memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
cont->nrverts = verts.size()/4;
cont->rverts = new int[cont->nrverts*4];
memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
/* cont->cx = cont->cy = cont->cz = 0;
for (int i = 0; i < cont->nverts; ++i)
{
cont->cx += cont->verts[i*4+0];
cont->cy += cont->verts[i*4+1];
cont->cz += cont->verts[i*4+2];
}
cont->cx /= cont->nverts;
cont->cy /= cont->nverts;
cont->cz /= cont->nverts;*/
cont->reg = reg;
}
}
}
}
// Check and merge droppings.
// Sometimes the previous algorithms can fail and create several countours
// per area. This pass will try to merge the holes into the main region.
for (int i = 0; i < cset.nconts; ++i)
{
rcContour& cont = cset.conts[i];
// Check if the contour is would backwards.
if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
{
// Find another contour which has the same region ID.
int mergeIdx = -1;
for (int j = 0; j < cset.nconts; ++j)
{
if (i == j) continue;
if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg)
{
// Make sure the polygon is correctly oriented.
if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts))
{
mergeIdx = j;
break;
}
}
}
if (mergeIdx == -1)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i);
}
else
{
rcContour& mcont = cset.conts[mergeIdx];
// Merge by closest points.
int ia, ib;
getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib);
if (!mergeContours(mcont, cont, ia, ib))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx);
}
}
}
}
delete [] flags;
rcTimeVal simplifyEndTime = rcGetPerformanceTimer();
rcTimeVal endTime = rcGetPerformanceTimer();
// if (rcGetLog())
// {
// rcGetLog()->log(RC_LOG_PROGRESS, "Create contours: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
// rcGetLog()->log(RC_LOG_PROGRESS, " - boundary: %.3f ms", rcGetDeltaTimeUsec(boundaryStartTime, boundaryEndTime)/1000.0f);
// rcGetLog()->log(RC_LOG_PROGRESS, " - contour: %.3f ms", rcGetDeltaTimeUsec(contourStartTime, contourEndTime)/1000.0f);
// }
if (rcGetBuildTimes())
{
rcGetBuildTimes()->buildContours += rcGetDeltaTimeUsec(startTime, endTime);
rcGetBuildTimes()->buildContoursTrace += rcGetDeltaTimeUsec(traceStartTime, traceEndTime);
rcGetBuildTimes()->buildContoursSimplify += rcGetDeltaTimeUsec(simplifyStartTime, simplifyEndTime);
}
return true;
}

@ -0,0 +1,799 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include "RecastDebugDraw.h"
#include "SDL.h"
#include "SDL_Opengl.h"
#include "MeshLoaderObj.h"
#include "Recast.h"
void rcDebugDrawMesh(const float* verts, int nverts,
const int* tris, const float* normals, int ntris,
const unsigned char* flags)
{
glBegin(GL_TRIANGLES);
for (int i = 0; i < ntris*3; i += 3)
{
float a = (2+normals[i+0]+normals[i+1])/4;
if (flags && !flags[i/3])
glColor3f(a,a*0.3f,a*0.1f);
else
glColor3f(a,a,a);
glVertex3fv(&verts[tris[i]*3]);
glVertex3fv(&verts[tris[i+1]*3]);
glVertex3fv(&verts[tris[i+2]*3]);
}
glEnd();
}
void rcDebugDrawMeshSlope(const float* verts, int nverts,
const int* tris, const float* normals, int ntris,
const float walkableSlopeAngle)
{
const float walkableThr = cosf(walkableSlopeAngle/180.0f*(float)M_PI);
glBegin(GL_TRIANGLES);
for (int i = 0; i < ntris*3; i += 3)
{
const float* norm = &normals[i];
float a = (2+norm[0]+norm[1])/4;
if (norm[1] > walkableThr)
glColor3f(a,a,a);
else
glColor3f(a,a*0.3f,a*0.1f);
glVertex3fv(&verts[tris[i]*3]);
glVertex3fv(&verts[tris[i+1]*3]);
glVertex3fv(&verts[tris[i+2]*3]);
}
glEnd();
}
void drawBoxWire(float minx, float miny, float minz, float maxx, float maxy, float maxz, const float* col)
{
glColor4fv(col);
// Top
glVertex3f(minx, miny, minz);
glVertex3f(maxx, miny, minz);
glVertex3f(maxx, miny, minz);
glVertex3f(maxx, miny, maxz);
glVertex3f(maxx, miny, maxz);
glVertex3f(minx, miny, maxz);
glVertex3f(minx, miny, maxz);
glVertex3f(minx, miny, minz);
// bottom
glVertex3f(minx, maxy, minz);
glVertex3f(maxx, maxy, minz);
glVertex3f(maxx, maxy, minz);
glVertex3f(maxx, maxy, maxz);
glVertex3f(maxx, maxy, maxz);
glVertex3f(minx, maxy, maxz);
glVertex3f(minx, maxy, maxz);
glVertex3f(minx, maxy, minz);
// Sides
glVertex3f(minx, miny, minz);
glVertex3f(minx, maxy, minz);
glVertex3f(maxx, miny, minz);
glVertex3f(maxx, maxy, minz);
glVertex3f(maxx, miny, maxz);
glVertex3f(maxx, maxy, maxz);
glVertex3f(minx, miny, maxz);
glVertex3f(minx, maxy, maxz);
}
void drawBox(float minx, float miny, float minz, float maxx, float maxy, float maxz,
const float* col1, const float* col2)
{
float verts[8*3] =
{
minx, miny, minz,
maxx, miny, minz,
maxx, miny, maxz,
minx, miny, maxz,
minx, maxy, minz,
maxx, maxy, minz,
maxx, maxy, maxz,
minx, maxy, maxz,
};
static const float dim[6] =
{
0.95f, 0.55f, 0.65f, 0.85f, 0.65f, 0.85f,
};
static const unsigned char inds[6*5] =
{
0, 7, 6, 5, 4,
1, 0, 1, 2, 3,
2, 1, 5, 6, 2,
3, 3, 7, 4, 0,
4, 2, 6, 7, 3,
5, 0, 4, 5, 1,
};
const unsigned char* in = inds;
for (int i = 0; i < 6; ++i)
{
float d = dim[*in]; in++;
if (i == 0)
glColor4f(d*col2[0],d*col2[1],d*col2[2], col2[3]);
else
glColor4f(d*col1[0],d*col1[1],d*col1[2], col1[3]);
glVertex3fv(&verts[*in*3]); in++;
glVertex3fv(&verts[*in*3]); in++;
glVertex3fv(&verts[*in*3]); in++;
glVertex3fv(&verts[*in*3]); in++;
}
}
void rcDebugDrawCylinderWire(float minx, float miny, float minz, float maxx, float maxy, float maxz, const float* col)
{
static const int NUM_SEG = 16;
float dir[NUM_SEG*2];
for (int i = 0; i < NUM_SEG; ++i)
{
const float a = (float)i/(float)NUM_SEG*(float)M_PI*2;
dir[i*2] = cosf(a);
dir[i*2+1] = sinf(a);
}
const float cx = (maxx + minx)/2;
const float cz = (maxz + minz)/2;
const float rx = (maxx - minx)/2;
const float rz = (maxz - minz)/2;
glColor4fv(col);
glBegin(GL_LINES);
for (int i = 0, j=NUM_SEG-1; i < NUM_SEG; j=i++)
{
glVertex3f(cx+dir[j*2+0]*rx, miny, cz+dir[j*2+1]*rz);
glVertex3f(cx+dir[i*2+0]*rx, miny, cz+dir[i*2+1]*rz);
glVertex3f(cx+dir[j*2+0]*rx, maxy, cz+dir[j*2+1]*rz);
glVertex3f(cx+dir[i*2+0]*rx, maxy, cz+dir[i*2+1]*rz);
}
for (int i = 0; i < NUM_SEG; i += NUM_SEG/4)
{
glVertex3f(cx+dir[i*2+0]*rx, miny, cz+dir[i*2+1]*rz);
glVertex3f(cx+dir[i*2+0]*rx, maxy, cz+dir[i*2+1]*rz);
}
glEnd();
}
void rcDebugDrawBoxWire(float minx, float miny, float minz, float maxx, float maxy, float maxz, const float* col)
{
glBegin(GL_LINES);
drawBoxWire(minx, miny, minz, maxx, maxy, maxz, col);
glEnd();
}
void rcDebugDrawBox(float minx, float miny, float minz, float maxx, float maxy, float maxz,
const float* col1, const float* col2)
{
glBegin(GL_QUADS);
drawBox(minx, miny, minz, maxx, maxy, maxz, col1, col2);
glEnd();
}
void rcDebugDrawHeightfieldSolid(const rcHeightfield& hf)
{
static const float col0[4] = { 1,1,1,1 };
const float* orig = hf.bmin;
const float cs = hf.cs;
const float ch = hf.ch;
const int w = hf.width;
const int h = hf.height;
glBegin(GL_QUADS);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
float fx = orig[0] + x*cs;
float fz = orig[2] + y*cs;
const rcSpan* s = hf.spans[x + y*w];
while (s)
{
drawBox(fx, orig[1]+s->smin*ch, fz, fx+cs, orig[1] + s->smax*ch, fz+cs, col0, col0);
s = s->next;
}
}
}
glEnd();
}
void rcDebugDrawHeightfieldWalkable(const rcHeightfield& hf)
{
static const float col0[4] = { 1,1,1,1 };
static const float col1[4] = { 0.25f,0.44f,0.5f,1 };
const float* orig = hf.bmin;
const float cs = hf.cs;
const float ch = hf.ch;
const int w = hf.width;
const int h = hf.height;
glBegin(GL_QUADS);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
float fx = orig[0] + x*cs;
float fz = orig[2] + y*cs;
const rcSpan* s = hf.spans[x + y*w];
while (s)
{
bool csel = (s->flags & 0x1) == 0;
drawBox(fx, orig[1]+s->smin*ch, fz, fx+cs, orig[1] + s->smax*ch, fz+cs, col0, csel ? col0 : col1);
s = s->next;
}
}
}
glEnd();
}
void rcDebugDrawCompactHeightfieldSolid(const rcCompactHeightfield& chf)
{
const float cs = chf.cs;
const float ch = chf.ch;
glColor3ub(64,112,128);
glBegin(GL_QUADS);
for (int y = 0; y < chf.height; ++y)
{
for (int x = 0; x < chf.width; ++x)
{
const float fx = chf.bmin[0] + x*cs;
const float fz = chf.bmin[2] + y*cs;
const rcCompactCell& c = chf.cells[x+y*chf.width];
for (unsigned i = c.index, ni = c.index+c.count; i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
const float fy = chf.bmin[1] + (s.y+1)*ch;
glVertex3f(fx, fy, fz);
glVertex3f(fx, fy, fz+cs);
glVertex3f(fx+cs, fy, fz+cs);
glVertex3f(fx+cs, fy, fz);
}
}
}
glEnd();
}
void rcDebugDrawCompactHeightfieldRegions(const rcCompactHeightfield& chf)
{
const float cs = chf.cs;
const float ch = chf.ch;
float col[4] = { 1,1,1,1 };
glBegin(GL_QUADS);
for (int y = 0; y < chf.height; ++y)
{
for (int x = 0; x < chf.width; ++x)
{
const float fx = chf.bmin[0] + x*cs;
const float fz = chf.bmin[2] + y*cs;
const rcCompactCell& c = chf.cells[x+y*chf.width];
for (unsigned i = c.index, ni = c.index+c.count; i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (s.reg)
{
intToCol(s.reg, col);
glColor4fv(col);
}
else
{
glColor4ub(0,0,0,128);
}
const float fy = chf.bmin[1] + (s.y+1)*ch;
glVertex3f(fx, fy, fz);
glVertex3f(fx, fy, fz+cs);
glVertex3f(fx+cs, fy, fz+cs);
glVertex3f(fx+cs, fy, fz);
}
}
}
glEnd();
}
void rcDebugDrawCompactHeightfieldDistance(const rcCompactHeightfield& chf)
{
const float cs = chf.cs;
const float ch = chf.ch;
float maxd = chf.maxDistance;
if (maxd < 1.0f) maxd = 1;
float dscale = 1.0f / maxd;
glBegin(GL_QUADS);
for (int y = 0; y < chf.height; ++y)
{
for (int x = 0; x < chf.width; ++x)
{
const float fx = chf.bmin[0] + x*cs;
const float fz = chf.bmin[2] + y*cs;
const rcCompactCell& c = chf.cells[x+y*chf.width];
for (unsigned i = c.index, ni = c.index+c.count; i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
const float fy = chf.bmin[1] + (s.y+1)*ch;
float cd = (float)s.dist * dscale;
glColor3f(cd, cd, cd);
glVertex3f(fx, fy, fz);
glVertex3f(fx, fy, fz+cs);
glVertex3f(fx+cs, fy, fz+cs);
glVertex3f(fx+cs, fy, fz);
}
}
}
glEnd();
}
static void getContourCenter(const rcContour* cont, const float* orig, float cs, float ch, float* center)
{
center[0] = 0;
center[1] = 0;
center[2] = 0;
if (!cont->nverts)
return;
for (int i = 0; i < cont->nverts; ++i)
{
const int* v = &cont->verts[i*4];
center[0] += (float)v[0];
center[1] += (float)v[1];
center[2] += (float)v[2];
}
const float s = 1.0f / cont->nverts;
center[0] *= s * cs;
center[1] *= s * ch;
center[2] *= s * cs;
center[0] += orig[0];
center[1] += orig[1] + 4*ch;
center[2] += orig[2];
}
static const rcContour* findContourFromSet(const rcContourSet& cset, unsigned short reg)
{
for (int i = 0; i < cset.nconts; ++i)
{
if (cset.conts[i].reg == reg)
return &cset.conts[i];
}
return 0;
}
static void drawArc(const float* p0, const float* p1)
{
static const int NPTS = 8;
float pts[NPTS*3];
float dir[3];
vsub(dir, p1, p0);
const float len = sqrtf(vdistSqr(p0, p1));
for (int i = 0; i < NPTS; ++i)
{
float u = (float)i / (float)(NPTS-1);
float* p = &pts[i*3];
p[0] = p0[0] + dir[0] * u;
p[1] = p0[1] + dir[1] * u + (len/4) * (1-rcSqr(u*2-1));
p[2] = p0[2] + dir[2] * u;
}
for (int i = 0; i < NPTS-1; ++i)
{
glVertex3fv(&pts[i*3]);
glVertex3fv(&pts[(i+1)*3]);
}
}
void rcDrawArc(const float* p0, const float* p1)
{
glBegin(GL_LINES);
drawArc(p0, p1);
glEnd();
}
void rcDebugDrawRegionConnections(const rcContourSet& cset, const float alpha)
{
const float* orig = cset.bmin;
const float cs = cset.cs;
const float ch = cset.ch;
// Draw centers
float pos[3], pos2[3];
glColor4ub(0,0,0,196);
glLineWidth(2.0f);
glBegin(GL_LINES);
for (int i = 0; i < cset.nconts; ++i)
{
const rcContour* cont = &cset.conts[i];
getContourCenter(cont, orig, cs, ch, pos);
for (int j = 0; j < cont->nverts; ++j)
{
const int* v = &cont->verts[j*4];
if (v[3] == 0 || (unsigned short)v[3] < cont->reg) continue;
const rcContour* cont2 = findContourFromSet(cset, (unsigned short)v[3]);
if (cont2)
{
getContourCenter(cont2, orig, cs, ch, pos2);
drawArc(pos, pos2);
}
}
}
glEnd();
float col[4] = { 1,1,1,alpha };
glPointSize(7.0f);
glBegin(GL_POINTS);
for (int i = 0; i < cset.nconts; ++i)
{
const rcContour* cont = &cset.conts[i];
intToCol(cont->reg, col);
col[0] *= 0.5f;
col[1] *= 0.5f;
col[2] *= 0.5f;
glColor4fv(col);
getContourCenter(cont, orig, cs, ch, pos);
glVertex3fv(pos);
}
glEnd();
glLineWidth(1.0f);
glPointSize(1.0f);
}
void rcDebugDrawRawContours(const rcContourSet& cset, const float alpha)
{
const float* orig = cset.bmin;
const float cs = cset.cs;
const float ch = cset.ch;
float col[4] = { 1,1,1,alpha };
glLineWidth(2.0f);
glPointSize(2.0f);
for (int i = 0; i < cset.nconts; ++i)
{
const rcContour& c = cset.conts[i];
intToCol(c.reg, col);
glColor4fv(col);
glBegin(GL_LINE_LOOP);
for (int j = 0; j < c.nrverts; ++j)
{
const int* v = &c.rverts[j*4];
float fx = orig[0] + v[0]*cs;
float fy = orig[1] + (v[1]+1+(i&1))*ch;
float fz = orig[2] + v[2]*cs;
glVertex3f(fx,fy,fz);
}
glEnd();
col[0] *= 0.5f;
col[1] *= 0.5f;
col[2] *= 0.5f;
glColor4fv(col);
glBegin(GL_POINTS);
for (int j = 0; j < c.nrverts; ++j)
{
const int* v = &c.rverts[j*4];
float off = 0;
if (v[3] & RC_BORDER_VERTEX)
{
glColor4ub(255,255,255,255);
off = ch*2;
}
else
{
glColor4fv(col);
}
float fx = orig[0] + v[0]*cs;
float fy = orig[1] + (v[1]+1+(i&1))*ch + off;
float fz = orig[2] + v[2]*cs;
glVertex3f(fx,fy,fz);
}
glEnd();
}
glLineWidth(1.0f);
glPointSize(1.0f);
}
void rcDebugDrawContours(const rcContourSet& cset, const float alpha)
{
const float* orig = cset.bmin;
const float cs = cset.cs;
const float ch = cset.ch;
float col[4] = { 1,1,1,1 };
glLineWidth(2.5f);
glPointSize(3.0f);
for (int i = 0; i < cset.nconts; ++i)
{
const rcContour& c = cset.conts[i];
intToCol(c.reg, col);
glColor4fv(col);
glBegin(GL_LINE_LOOP);
for (int j = 0; j < c.nverts; ++j)
{
const int* v = &c.verts[j*4];
float fx = orig[0] + v[0]*cs;
float fy = orig[1] + (v[1]+1+(i&1))*ch;
float fz = orig[2] + v[2]*cs;
glVertex3f(fx,fy,fz);
}
glEnd();
col[0] *= 0.5f;
col[1] *= 0.5f;
col[2] *= 0.5f;
glColor4fv(col);
glBegin(GL_POINTS);
for (int j = 0; j < c.nverts; ++j)
{
const int* v = &c.verts[j*4];
float off = 0;
if (v[3] & RC_BORDER_VERTEX)
{
glColor4ub(255,255,255,255);
off = ch*2;
}
else
{
glColor4fv(col);
}
float fx = orig[0] + v[0]*cs;
float fy = orig[1] + (v[1]+1+(i&1))*ch + off;
float fz = orig[2] + v[2]*cs;
glVertex3f(fx,fy,fz);
}
glEnd();
}
glLineWidth(1.0f);
glPointSize(1.0f);
}
void rcDebugDrawPolyMesh(const struct rcPolyMesh& mesh)
{
const int nvp = mesh.nvp;
const float cs = mesh.cs;
const float ch = mesh.ch;
const float* orig = mesh.bmin;
float col[4] = {1,1,1,0.75f};
glBegin(GL_TRIANGLES);
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* p = &mesh.polys[i*nvp*2];
intToCol(i, col);
glColor4fv(col);
unsigned short vi[3];
for (int j = 2; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
vi[0] = p[0];
vi[1] = p[j-1];
vi[2] = p[j];
for (int k = 0; k < 3; ++k)
{
const unsigned short* v = &mesh.verts[vi[k]*3];
const float x = orig[0] + v[0]*cs;
const float y = orig[1] + (v[1]+1)*ch;
const float z = orig[2] + v[2]*cs;
glVertex3f(x, y, z);
}
}
}
glEnd();
// Draw tri boundaries
glColor4ub(0,48,64,32);
glLineWidth(1.5f);
glBegin(GL_LINES);
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* poly = &mesh.polys[i*nvp*2];
for (int j = 0; j < nvp; ++j)
{
if (poly[j] == 0xffff) break;
if (poly[nvp+j] == 0xffff) continue;
int vi[2];
vi[0] = poly[j];
if (j+1 >= nvp || poly[j+1] == 0xffff)
vi[1] = poly[0];
else
vi[1] = poly[j+1];
for (int k = 0; k < 2; ++k)
{
const unsigned short* v = &mesh.verts[vi[k]*3];
const float x = orig[0] + v[0]*cs;
const float y = orig[1] + (v[1]+1)*ch + 0.1f;
const float z = orig[2] + v[2]*cs;
glVertex3f(x, y, z);
}
}
}
glEnd();
// Draw boundaries
glLineWidth(2.5f);
glColor4ub(0,48,64,220);
glBegin(GL_LINES);
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* poly = &mesh.polys[i*nvp*2];
for (int j = 0; j < nvp; ++j)
{
if (poly[j] == 0xffff) break;
if (poly[nvp+j] != 0xffff) continue;
int vi[2];
vi[0] = poly[j];
if (j+1 >= nvp || poly[j+1] == 0xffff)
vi[1] = poly[0];
else
vi[1] = poly[j+1];
for (int k = 0; k < 2; ++k)
{
const unsigned short* v = &mesh.verts[vi[k]*3];
const float x = orig[0] + v[0]*cs;
const float y = orig[1] + (v[1]+1)*ch + 0.1f;
const float z = orig[2] + v[2]*cs;
glVertex3f(x, y, z);
}
}
}
glEnd();
glLineWidth(1.0f);
glPointSize(3.0f);
glColor4ub(0,0,0,220);
glBegin(GL_POINTS);
for (int i = 0; i < mesh.nverts; ++i)
{
const unsigned short* v = &mesh.verts[i*3];
const float x = orig[0] + v[0]*cs;
const float y = orig[1] + (v[1]+1)*ch + 0.1f;
const float z = orig[2] + v[2]*cs;
glVertex3f(x, y, z);
}
glEnd();
glPointSize(1.0f);
}
void rcDebugDrawPolyMeshDetail(const struct rcPolyMeshDetail& dmesh)
{
float col[4] = {1,1,1,0.75f};
glBegin(GL_TRIANGLES);
for (int i = 0; i < dmesh.nmeshes; ++i)
{
const unsigned short* m = &dmesh.meshes[i*4];
const unsigned short bverts = m[0];
const unsigned short btris = m[2];
const unsigned short ntris = m[3];
const float* verts = &dmesh.verts[bverts*3];
const unsigned char* tris = &dmesh.tris[btris*4];
intToCol(i, col);
glColor4fv(col);
for (int j = 0; j < ntris; ++j)
{
glVertex3fv(&verts[tris[j*4+0]*3]);
glVertex3fv(&verts[tris[j*4+1]*3]);
glVertex3fv(&verts[tris[j*4+2]*3]);
}
}
glEnd();
// Internal edges.
glLineWidth(1.0f);
glColor4ub(0,0,0,64);
glBegin(GL_LINES);
for (int i = 0; i < dmesh.nmeshes; ++i)
{
const unsigned short* m = &dmesh.meshes[i*4];
const unsigned short bverts = m[0];
const unsigned short btris = m[2];
const unsigned short ntris = m[3];
const float* verts = &dmesh.verts[bverts*3];
const unsigned char* tris = &dmesh.tris[btris*4];
for (int j = 0; j < ntris; ++j)
{
const unsigned char* t = &tris[j*4];
for (int k = 0, kp = 2; k < 3; kp=k++)
{
unsigned char ef = (t[3] >> (kp*2)) & 0x3;
if (ef == 0)
{
// Internal edge
if (t[kp] < t[k])
{
glVertex3fv(&verts[t[kp]*3]);
glVertex3fv(&verts[t[k]*3]);
}
}
}
}
}
glEnd();
// External edges.
glLineWidth(2.0f);
glColor4ub(0,0,0,64);
glBegin(GL_LINES);
for (int i = 0; i < dmesh.nmeshes; ++i)
{
const unsigned short* m = &dmesh.meshes[i*4];
const unsigned short bverts = m[0];
const unsigned short btris = m[2];
const unsigned short ntris = m[3];
const float* verts = &dmesh.verts[bverts*3];
const unsigned char* tris = &dmesh.tris[btris*4];
for (int j = 0; j < ntris; ++j)
{
const unsigned char* t = &tris[j*4];
for (int k = 0, kp = 2; k < 3; kp=k++)
{
unsigned char ef = (t[3] >> (kp*2)) & 0x3;
if (ef != 0)
{
// Ext edge
glVertex3fv(&verts[t[kp]*3]);
glVertex3fv(&verts[t[k]*3]);
}
}
}
}
glEnd();
glLineWidth(1.0f);
glPointSize(3.0f);
glBegin(GL_POINTS);
for (int i = 0; i < dmesh.nmeshes; ++i)
{
const unsigned short* m = &dmesh.meshes[i*4];
const unsigned short bverts = m[0];
const unsigned short nverts = m[1];
const float* verts = &dmesh.verts[bverts*3];
for (int j = 0; j < nverts; ++j)
{
glColor4ub(0,0,0,64);
glVertex3fv(&verts[j*3]);
}
}
glEnd();
glPointSize(1.0f);
}

@ -0,0 +1,249 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
void rcFilterLedgeSpans(const int walkableHeight,
const int walkableClimb,
rcHeightfield& solid)
{
rcTimeVal startTime = rcGetPerformanceTimer();
const int w = solid.width;
const int h = solid.height;
const int MAX_HEIGHT = 0xffff;
// Mark border spans.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
{
// Skip non walkable spans.
if ((s->flags & RC_WALKABLE) == 0)
continue;
const int bot = (int)s->smax;
const int top = (int)s->next ? (int)s->next->smin : MAX_HEIGHT;
// Find neighbours minimum height.
int minh = MAX_HEIGHT;
for (int dir = 0; dir < 4; ++dir)
{
int dx = x + rcGetDirOffsetX(dir);
int dy = y + rcGetDirOffsetY(dir);
// Skip neighbours which are out of bounds.
if (dx < 0 || dy < 0 || dx >= w || dy >= h)
{
minh = rcMin(minh, -walkableClimb - bot);
continue;
}
// From minus infinity to the first span.
rcSpan* ns = solid.spans[dx + dy*w];
int nbot = -walkableClimb;
int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
// Skip neightbour if the gap between the spans is too small.
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
minh = rcMin(minh, nbot - bot);
// Rest of the spans.
for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
{
nbot = (int)ns->smax;
ntop = (int)ns->next ? (int)ns->next->smin : MAX_HEIGHT;
// Skip neightbour if the gap between the spans is too small.
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
minh = rcMin(minh, nbot - bot);
}
}
// The current span is close to a ledge if the drop to any
// neighbour span is less than the walkableClimb.
if (minh < -walkableClimb)
s->flags &= ~RC_WALKABLE;
}
}
}
rcTimeVal endTime = rcGetPerformanceTimer();
// if (rcGetLog())
// rcGetLog()->log(RC_LOG_PROGRESS, "Filter border: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
if (rcGetBuildTimes())
rcGetBuildTimes()->filterBorder += rcGetDeltaTimeUsec(startTime, endTime);
}
void rcFilterWalkableLowHeightSpans(int walkableHeight,
rcHeightfield& solid)
{
rcTimeVal startTime = rcGetPerformanceTimer();
const int w = solid.width;
const int h = solid.height;
const int MAX_HEIGHT = 0xffff;
// Remove walkable flag from spans which do not have enough
// space above them for the agent to stand there.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
{
const int bot = (int)s->smax;
const int top = (int)s->next ? (int)s->next->smin : MAX_HEIGHT;
if ((top - bot) <= walkableHeight)
s->flags &= ~RC_WALKABLE;
}
}
}
rcTimeVal endTime = rcGetPerformanceTimer();
// if (rcGetLog())
// rcGetLog()->log(RC_LOG_PROGRESS, "Filter walkable: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
if (rcGetBuildTimes())
rcGetBuildTimes()->filterWalkable += rcGetDeltaTimeUsec(startTime, endTime);
}
struct rcReachableSeed
{
inline void set(int ix, int iy, rcSpan* is)
{
x = (unsigned short)ix;
y = (unsigned short)iy;
s = is;
}
unsigned short x, y;
rcSpan* s;
};
bool rcMarkReachableSpans(const int walkableHeight,
const int walkableClimb,
rcHeightfield& solid)
{
const int w = solid.width;
const int h = solid.height;
const int MAX_HEIGHT = 0xffff;
rcTimeVal startTime = rcGetPerformanceTimer();
// Build navigable space.
const int MAX_SEEDS = w*h;
rcReachableSeed* stack = new rcReachableSeed[MAX_SEEDS];
if (!stack)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcMarkReachableSpans: Out of memory 'stack' (%d).", MAX_SEEDS);
return false;
}
int stackSize = 0;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
rcSpan* topSpan = solid.spans[x + y*w];
if (!topSpan)
continue;
while (topSpan->next)
topSpan = topSpan->next;
// If the span is not walkable, skip it.
if ((topSpan->flags & RC_WALKABLE) == 0)
continue;
// If the span has been visited already, skip it.
if (topSpan->flags & RC_REACHABLE)
continue;
// Start flood fill.
topSpan->flags |= RC_REACHABLE;
stackSize = 0;
stack[stackSize].set(x, y, topSpan);
stackSize++;
while (stackSize)
{
// Pop a seed from the stack.
stackSize--;
rcReachableSeed cur = stack[stackSize];
const int bot = (int)cur.s->smax;
const int top = (int)cur.s->next ? (int)cur.s->next->smin : MAX_HEIGHT;
// Visit neighbours in all 4 directions.
for (int dir = 0; dir < 4; ++dir)
{
int dx = (int)cur.x + rcGetDirOffsetX(dir);
int dy = (int)cur.y + rcGetDirOffsetY(dir);
// Skip neighbour which are out of bounds.
if (dx < 0 || dy < 0 || dx >= w || dy >= h)
continue;
for (rcSpan* ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
{
// Skip neighbour if it is not walkable.
if ((ns->flags & RC_WALKABLE) == 0)
continue;
// Skip the neighbour if it has been visited already.
if (ns->flags & RC_REACHABLE)
continue;
const int nbot = (int)ns->smax;
const int ntop = (int)ns->next ? (int)ns->next->smin : MAX_HEIGHT;
// Skip neightbour if the gap between the spans is too small.
if (rcMin(top,ntop) - rcMax(bot,nbot) < walkableHeight)
continue;
// Skip neightbour if the climb height to the neighbour is too high.
if (rcAbs(nbot - bot) >= walkableClimb)
continue;
// This neighbour has not been visited yet.
// Mark it as reachable and add it to the seed stack.
ns->flags |= RC_REACHABLE;
if (stackSize < MAX_SEEDS)
{
stack[stackSize].set(dx, dy, ns);
stackSize++;
}
}
}
}
}
}
delete [] stack;
rcTimeVal endTime = rcGetPerformanceTimer();
// if (rcGetLog())
// rcGetLog()->log(RC_LOG_PROGRESS, "Mark reachable: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
if (rcGetBuildTimes())
rcGetBuildTimes()->filterMarkReachable += rcGetDeltaTimeUsec(startTime, endTime);
return true;
}

@ -0,0 +1,77 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "RecastLog.h"
#include <stdio.h>
#include <stdarg.h>
static rcLog* g_log = 0;
static rcBuildTimes* g_btimes = 0;
rcLog::rcLog() :
m_messageCount(0),
m_textPoolSize(0)
{
}
rcLog::~rcLog()
{
if (g_log == this)
g_log = 0;
}
void rcLog::log(rcLogCategory category, const char* format, ...)
{
if (m_messageCount >= MAX_MESSAGES)
return;
char* dst = &m_textPool[m_textPoolSize];
int n = TEXT_POOL_SIZE - m_textPoolSize;
if (n < 2)
return;
// Store category
*dst = (char)category;
n--;
// Store message
va_list ap;
va_start(ap, format);
int ret = vsnprintf(dst+1, n-1, format, ap);
va_end(ap);
if (ret > 0)
m_textPoolSize += ret+2;
m_messages[m_messageCount++] = dst;
}
void rcSetLog(rcLog* log)
{
g_log = log;
}
rcLog* rcGetLog()
{
return g_log;
}
void rcSetBuildTimes(rcBuildTimes* btimes)
{
g_btimes = btimes;
}
rcBuildTimes* rcGetBuildTimes()
{
return g_btimes;
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,981 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
struct rcHeightPatch
{
inline rcHeightPatch() : data(0) {}
inline ~rcHeightPatch() { delete [] data; }
unsigned short* data;
int xmin, ymin, width, height;
};
static int circumCircle(const float xp, const float yp,
const float x1, const float y1,
const float x2, const float y2,
const float x3, const float y3,
float& xc, float& yc, float& rsqr)
{
static const float EPSILON = 1e-6f;
const float fabsy1y2 = rcAbs(y1-y2);
const float fabsy2y3 = rcAbs(y2-y3);
/* Check for coincident points */
if (fabsy1y2 < EPSILON && fabsy2y3 < EPSILON)
return 0;
if (fabsy1y2 < EPSILON)
{
const float m2 = - (x3-x2) / (y3-y2);
const float mx2 = (x2 + x3) / 2.0f;
const float my2 = (y2 + y3) / 2.0f;
xc = (x2 + x1) / 2.0f;
yc = m2 * (xc - mx2) + my2;
}
else if (fabsy2y3 < EPSILON)
{
const float m1 = - (x2-x1) / (y2-y1);
const float mx1 = (x1 + x2) / 2.0f;
const float my1 = (y1 + y2) / 2.0f;
xc = (x3 + x2) / 2.0f;
yc = m1 * (xc - mx1) + my1;
}
else
{
const float m1 = - (x2-x1) / (y2-y1);
const float m2 = - (x3-x2) / (y3-y2);
const float mx1 = (x1 + x2) / 2.0f;
const float mx2 = (x2 + x3) / 2.0f;
const float my1 = (y1 + y2) / 2.0f;
const float my2 = (y2 + y3) / 2.0f;
xc = (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2);
if (fabsy1y2 > fabsy2y3)
yc = m1 * (xc - mx1) + my1;
else
yc = m2 * (xc - mx2) + my2;
}
float dx,dy;
dx = x2 - xc;
dy = y2 - yc;
rsqr = dx*dx + dy*dy;
dx = xp - xc;
dy = yp - yc;
const float drsqr = dx*dx + dy*dy;
return (drsqr <= rsqr) ? 1 : 0;
}
static int ptcmp(void* up, const void *v1, const void *v2)
{
const float* verts = (const float*)up;
const float* p1 = &verts[(*(const int*)v1)*3];
const float* p2 = &verts[(*(const int*)v2)*3];
if (p1[0] < p2[0])
return -1;
else if (p1[0] > p2[0])
return 1;
else
return 0;
}
// Based on Paul Bourke's triangulate.c
// http://astronomy.swin.edu.au/~pbourke/terrain/triangulate/triangulate.c
static void delaunay(const int nv, float *verts, rcIntArray& idx, rcIntArray& tris, rcIntArray& edges)
{
// Sort vertices
idx.resize(nv);
for (int i = 0; i < nv; ++i)
idx[i] = i;
#ifdef WIN32
qsort_s(&idx[0], idx.size(), sizeof(int), ptcmp, verts);
#else
qsort_r(&idx[0], idx.size(), sizeof(int), verts, ptcmp);
#endif
// Find the maximum and minimum vertex bounds.
// This is to allow calculation of the bounding triangle
float xmin = verts[0];
float ymin = verts[2];
float xmax = xmin;
float ymax = ymin;
for (int i = 1; i < nv; ++i)
{
xmin = rcMin(xmin, verts[i*3+0]);
xmax = rcMax(xmax, verts[i*3+0]);
ymin = rcMin(ymin, verts[i*3+2]);
ymax = rcMax(ymax, verts[i*3+2]);
}
float dx = xmax - xmin;
float dy = ymax - ymin;
float dmax = (dx > dy) ? dx : dy;
float xmid = (xmax + xmin) / 2.0f;
float ymid = (ymax + ymin) / 2.0f;
// Set up the supertriangle
// This is a triangle which encompasses all the sample points.
// The supertriangle coordinates are added to the end of the
// vertex list. The supertriangle is the first triangle in
// the triangle list.
float sv[3*3];
sv[0] = xmid - 20 * dmax;
sv[1] = 0;
sv[2] = ymid - dmax;
sv[3] = xmid;
sv[4] = 0;
sv[5] = ymid + 20 * dmax;
sv[6] = xmid + 20 * dmax;
sv[7] = 0;
sv[8] = ymid - dmax;
tris.push(-3);
tris.push(-2);
tris.push(-1);
tris.push(0); // not completed
for (int i = 0; i < nv; ++i)
{
const float xp = verts[idx[i]*3+0];
const float yp = verts[idx[i]*3+2];
edges.resize(0);
// Set up the edge buffer.
// If the point (xp,yp) lies inside the circumcircle then the
// three edges of that triangle are added to the edge buffer
// and that triangle is removed.
for (int j = 0; j < tris.size()/4; ++j)
{
int* t = &tris[j*4];
if (t[3]) // completed?
continue;
const float* v1 = t[0] < 0 ? &sv[(t[0]+3)*3] : &verts[idx[t[0]]*3];
const float* v2 = t[1] < 0 ? &sv[(t[1]+3)*3] : &verts[idx[t[1]]*3];
const float* v3 = t[2] < 0 ? &sv[(t[2]+3)*3] : &verts[idx[t[2]]*3];
float xc,yc,rsqr;
int inside = circumCircle(xp,yp, v1[0],v1[2], v2[0],v2[2], v3[0],v3[2], xc,yc,rsqr);
if (xc < xp && rcSqr(xp-xc) > rsqr)
t[3] = 1;
if (inside)
{
// Collect triangle edges.
edges.push(t[0]);
edges.push(t[1]);
edges.push(t[1]);
edges.push(t[2]);
edges.push(t[2]);
edges.push(t[0]);
// Remove triangle j.
t[0] = tris[tris.size()-4];
t[1] = tris[tris.size()-3];
t[2] = tris[tris.size()-2];
t[3] = tris[tris.size()-1];
tris.resize(tris.size()-4);
j--;
}
}
// Remove duplicate edges.
const int ne = edges.size()/2;
for (int j = 0; j < ne-1; ++j)
{
for (int k = j+1; k < ne; ++k)
{
// Dupe?, make null.
if ((edges[j*2+0] == edges[k*2+1]) && (edges[j*2+1] == edges[k*2+0]))
{
edges[j*2+0] = 0;
edges[j*2+1] = 0;
edges[k*2+0] = 0;
edges[k*2+1] = 0;
}
}
}
// Form new triangles for the current point
// Skipping over any null.
// All edges are arranged in clockwise order.
for (int j = 0; j < ne; ++j)
{
if (edges[j*2+0] == edges[j*2+1]) continue;
tris.push(edges[j*2+0]);
tris.push(edges[j*2+1]);
tris.push(i);
tris.push(0); // not completed
}
}
// Remove triangles with supertriangle vertices
// These are triangles which have a vertex number greater than nv
for (int i = 0; i < tris.size()/4; ++i)
{
int* t = &tris[i*4];
if (t[0] < 0 || t[1] < 0 || t[2] < 0)
{
t[0] = tris[tris.size()-4];
t[1] = tris[tris.size()-3];
t[2] = tris[tris.size()-2];
t[3] = tris[tris.size()-1];
tris.resize(tris.size()-4);
i--;
}
}
// Triangle vertices are pointing to sorted vertices, remap indices.
for (int i = 0; i < tris.size(); ++i)
tris[i] = idx[tris[i]];
}
inline float vdot2(const float* a, const float* b)
{
return a[0]*b[0] + a[2]*b[2];
}
static float distPtTri(const float* p, const float* a, const float* b, const float* c)
{
float v0[3], v1[3], v2[3];
vsub(v0, c,a);
vsub(v1, b,a);
vsub(v2, p,a);
const float dot00 = vdot2(v0, v0);
const float dot01 = vdot2(v0, v1);
const float dot02 = vdot2(v0, v2);
const float dot11 = vdot2(v1, v1);
const float dot12 = vdot2(v1, v2);
// Compute barycentric coordinates
float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// If point lies inside the triangle, return interpolated y-coord.
static const float EPS = 1e-4f;
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
{
float y = a[1] + v0[1]*u + v1[1]*v;
return fabsf(y-p[1]);
}
return FLT_MAX;
}
static float distancePtSeg(const float* pt, const float* p, const float* q)
{
float pqx = q[0] - p[0];
float pqy = q[1] - p[1];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dy = pt[1] - p[1];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqy*pqy + pqz*pqz;
float t = pqx*dx + pqy*dy + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = p[0] + t*pqx - pt[0];
dy = p[1] + t*pqy - pt[1];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dy*dy + dz*dz;
}
static float distancePtSeg2d(const float* pt, const float* p, const float* q)
{
float pqx = q[0] - p[0];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqz*pqz;
float t = pqx*dx + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = p[0] + t*pqx - pt[0];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dz*dz;
}
static float distToTriMesh(const float* p, const float* verts, int nverts, const int* tris, int ntris)
{
float dmin = FLT_MAX;
for (int i = 0; i < ntris; ++i)
{
const float* va = &verts[tris[i*4+0]*3];
const float* vb = &verts[tris[i*4+1]*3];
const float* vc = &verts[tris[i*4+2]*3];
float d = distPtTri(p, va,vb,vc);
if (d < dmin)
dmin = d;
}
if (dmin == FLT_MAX) return -1;
return dmin;
}
static float distToPoly(int nvert, const float* verts, const float* p)
{
float dmin = FLT_MAX;
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++)
{
const float* vi = &verts[i*3];
const float* vj = &verts[j*3];
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
c = !c;
dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
}
return c ? -dmin : dmin;
}
static unsigned short getHeight(const float* pos, const float* bmin, const float ics, const rcHeightPatch& hp)
{
int ix = (int)floorf((pos[0]-bmin[0])*ics + 0.01f);
int iz = (int)floorf((pos[2]-bmin[2])*ics + 0.01f);
ix = rcClamp(ix-hp.xmin, 0, hp.width);
iz = rcClamp(iz-hp.ymin, 0, hp.height);
unsigned short h = hp.data[ix+iz*hp.width];
return h;
}
static bool buildPolyDetail(const float* in, const int nin, unsigned short reg,
const float sampleDist, const float sampleMaxError,
const rcCompactHeightfield& chf, const rcHeightPatch& hp,
float* verts, int& nverts, rcIntArray& tris,
rcIntArray& edges, rcIntArray& idx, rcIntArray& samples)
{
static const int MAX_VERTS = 256;
static const int MAX_EDGE = 64;
float edge[(MAX_EDGE+1)*3];
nverts = 0;
for (int i = 0; i < nin; ++i)
vcopy(&verts[i*3], &in[i*3]);
nverts = nin;
const float ics = 1.0f/chf.cs;
// Tesselate outlines.
// This is done in separate pass in order to ensure
// seamless height values across the ply boundaries.
if (sampleDist > 0)
{
for (int i = 0, j = nin-1; i < nin; j=i++)
{
const float* vj = &in[j*3];
const float* vi = &in[i*3];
// Make sure the segments are always handled in same order
// using lexological sort or else there will be seams.
if (fabsf(vj[0]-vi[0]) < 1e-6f)
{
if (vj[2] > vi[2])
rcSwap(vj,vi);
}
else
{
if (vj[0] > vi[0])
rcSwap(vj,vi);
}
// Create samples along the edge.
float dx = vi[0] - vj[0];
float dy = vi[1] - vj[1];
float dz = vi[2] - vj[2];
float d = sqrtf(dx*dx + dz*dz);
int nn = 1 + (int)floorf(d/sampleDist);
if (nn > MAX_EDGE) nn = MAX_EDGE;
if (nverts+nn >= MAX_VERTS)
nn = MAX_VERTS-1-nverts;
for (int k = 0; k <= nn; ++k)
{
float u = (float)k/(float)nn;
float* pos = &edge[k*3];
pos[0] = vj[0] + dx*u;
pos[1] = vj[1] + dy*u;
pos[2] = vj[2] + dz*u;
pos[1] = chf.bmin[1] + getHeight(pos, chf.bmin, ics, hp)*chf.ch;
}
// Simplify samples.
int idx[MAX_EDGE] = {0,nn};
int nidx = 2;
for (int k = 0; k < nidx-1; )
{
const int a = idx[k];
const int b = idx[k+1];
const float* va = &edge[a*3];
const float* vb = &edge[b*3];
// Find maximum deviation along the segment.
float maxd = 0;
int maxi = -1;
for (int m = a+1; m < b; ++m)
{
float d = distancePtSeg(&edge[m*3],va,vb);
if (d > maxd)
{
maxd = d;
maxi = m;
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (maxi != -1 && maxd > rcSqr(sampleMaxError))
{
for (int m = nidx; m > k; --m)
idx[m] = idx[m-1];
idx[k+1] = maxi;
nidx++;
}
else
{
++k;
}
}
// Add new vertices.
for (int k = 1; k < nidx-1; ++k)
{
vcopy(&verts[nverts*3], &edge[idx[k]*3]);
nverts++;
}
}
}
// Tesselate the base mesh.
edges.resize(0);
tris.resize(0);
idx.resize(0);
delaunay(nverts, verts, idx, tris, edges);
if (sampleDist > 0)
{
// Create sample locations in a grid.
float bmin[3], bmax[3];
vcopy(bmin, in);
vcopy(bmax, in);
for (int i = 1; i < nin; ++i)
{
vmin(bmin, &in[i*3]);
vmax(bmax, &in[i*3]);
}
int x0 = (int)floorf(bmin[0]/sampleDist);
int x1 = (int)ceilf(bmax[0]/sampleDist);
int z0 = (int)floorf(bmin[2]/sampleDist);
int z1 = (int)ceilf(bmax[2]/sampleDist);
samples.resize(0);
for (int z = z0; z < z1; ++z)
{
for (int x = x0; x < x1; ++x)
{
float pt[3];
pt[0] = x*sampleDist;
pt[2] = z*sampleDist;
// Make sure the samples are not too close to the edges.
if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
samples.push(x);
samples.push(getHeight(pt, chf.bmin, ics, hp));
samples.push(z);
}
}
// Add the samples starting from the one that has the most
// error. The procedure stops when all samples are added
// or when the max error is within treshold.
const int nsamples = samples.size()/3;
for (int iter = 0; iter < nsamples; ++iter)
{
// Find sample with most error.
float bestpt[3];
float bestd = 0;
for (int i = 0; i < nsamples; ++i)
{
float pt[3];
pt[0] = samples[i*3+0]*sampleDist;
pt[1] = chf.bmin[1] + samples[i*3+1]*chf.ch;
pt[2] = samples[i*3+2]*sampleDist;
float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
if (d < 0) continue; // did not hit the mesh.
if (d > bestd)
{
bestd = d;
vcopy(bestpt,pt);
}
}
// If the max error is within accepted threshold, stop tesselating.
if (bestd <= sampleMaxError)
break;
// Add the new sample point.
vcopy(&verts[nverts*3],bestpt);
nverts++;
// Create new triangulation.
// TODO: Incremental add instead of full rebuild.
edges.resize(0);
tris.resize(0);
idx.resize(0);
delaunay(nverts, verts, idx, tris, edges);
if (nverts >= MAX_VERTS)
break;
}
}
return true;
}
static void getHeightData(const rcCompactHeightfield& chf,
const unsigned short* poly, const int npoly,
const unsigned short* verts,
rcHeightPatch& hp, rcIntArray& stack)
{
// Floodfill the heightfield to get 2D height data,
// starting at vertex locations as seeds.
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
stack.resize(0);
// Use poly vertices as seed points for the flood fill.
for (int j = 0; j < npoly; ++j)
{
const int ax = (int)verts[poly[j]*3+0];
const int ay = (int)verts[poly[j]*3+1];
const int az = (int)verts[poly[j]*3+2];
if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
az < hp.ymin || az >= hp.ymin+hp.height)
continue;
const rcCompactCell& c = chf.cells[ax+az*chf.width];
int dmin = 0xffff;
int ai = -1;
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
int d = rcAbs(ay - (int)s.y);
if (d < dmin)
{
ai = i;
dmin = d;
}
}
if (ai != -1)
{
stack.push(ax);
stack.push(az);
stack.push(ai);
}
}
while (stack.size() > 0)
{
int ci = stack.pop();
int cy = stack.pop();
int cx = stack.pop();
// Skip already visited locations.
int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width;
if (hp.data[idx] != 0xffff)
continue;
const rcCompactSpan& cs = chf.spans[ci];
hp.data[idx] = cs.y;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(cs, dir) == 0xf) continue;
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
if (ax < hp.xmin || ax >= (hp.xmin+hp.width) ||
ay < hp.ymin || ay >= (hp.ymin+hp.height))
continue;
if (hp.data[ax-hp.xmin+(ay-hp.ymin)*hp.width] != 0xffff)
continue;
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(cs, dir);
stack.push(ax);
stack.push(ay);
stack.push(ai);
}
}
}
static unsigned char getEdgeFlags(const float* va, const float* vb,
const float* vpoly, const int npoly)
{
// Return true if edge (va,vb) is part of the polygon.
static const float thrSqr = rcSqr(0.001f);
for (int i = 0, j = npoly-1; i < npoly; j=i++)
{
if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
return 1;
}
return 0;
}
static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
const float* vpoly, const int npoly)
{
unsigned char flags = 0;
flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
return flags;
}
bool rcBuildPolyMeshDetail(const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh)
{
rcTimeVal startTime = rcGetPerformanceTimer();
if (mesh.nverts == 0 || mesh.npolys == 0)
return true;
const int nvp = mesh.nvp;
const float cs = mesh.cs;
const float ch = mesh.ch;
const float* orig = mesh.bmin;
rcIntArray edges(64);
rcIntArray tris(512);
rcIntArray idx(512);
rcIntArray stack(512);
rcIntArray samples(512);
float verts[256*3];
float* poly = 0;
int* bounds = 0;
rcHeightPatch hp;
int nPolyVerts = 0;
int maxhw = 0, maxhh = 0;
bounds = new int[mesh.npolys*4];
if (!bounds)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
goto failure;
}
poly = new float[nvp*3];
if (!bounds)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
goto failure;
}
// Find max size for a polygon area.
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* p = &mesh.polys[i*nvp*2];
int& xmin = bounds[i*4+0];
int& xmax = bounds[i*4+1];
int& ymin = bounds[i*4+2];
int& ymax = bounds[i*4+3];
xmin = chf.width;
xmax = 0;
ymin = chf.height;
ymax = 0;
for (int j = 0; j < nvp; ++j)
{
if(p[j] == 0xffff) break;
const unsigned short* v = &mesh.verts[p[j]*3];
xmin = rcMin(xmin, (int)v[0]);
xmax = rcMax(xmax, (int)v[0]);
ymin = rcMin(ymin, (int)v[2]);
ymax = rcMax(ymax, (int)v[2]);
nPolyVerts++;
}
xmin = rcMax(0,xmin-1);
xmax = rcMin(chf.width,xmax+1);
ymin = rcMax(0,ymin-1);
ymax = rcMin(chf.height,ymax+1);
if (xmin >= xmax || ymin >= ymax) continue;
maxhw = rcMax(maxhw, xmax-xmin);
maxhh = rcMax(maxhh, ymax-ymin);
}
hp.data = new unsigned short[maxhw*maxhh];
if (!hp.data)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
goto failure;
}
dmesh.nmeshes = mesh.npolys;
dmesh.nverts = 0;
dmesh.ntris = 0;
dmesh.meshes = new unsigned short[dmesh.nmeshes*4];
if (!dmesh.meshes)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
goto failure;
}
int vcap = nPolyVerts+nPolyVerts/2;
int tcap = vcap*2;
dmesh.nverts = 0;
dmesh.verts = new float[vcap*3];
if (!dmesh.verts)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
goto failure;
}
dmesh.ntris = 0;
dmesh.tris = new unsigned char[tcap*4];
if (!dmesh.tris)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
goto failure;
}
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* p = &mesh.polys[i*nvp*2];
// Find polygon bounding box.
int npoly = 0;
for (int j = 0; j < nvp; ++j)
{
if(p[j] == 0xffff) break;
const unsigned short* v = &mesh.verts[p[j]*3];
poly[j*3+0] = orig[0] + v[0]*cs;
poly[j*3+1] = orig[1] + v[1]*ch;
poly[j*3+2] = orig[2] + v[2]*cs;
npoly++;
}
// Get the height data from the area of the polygon.
hp.xmin = bounds[i*4+0];
hp.ymin = bounds[i*4+2];
hp.width = bounds[i*4+1]-bounds[i*4+0];
hp.height = bounds[i*4+3]-bounds[i*4+2];
getHeightData(chf, p, npoly, mesh.verts, hp, stack);
// Build detail mesh.
int nverts = 0;
if (!buildPolyDetail(poly, npoly, mesh.regs[i],
sampleDist, sampleMaxError,
chf, hp, verts, nverts, tris,
edges, idx, samples))
{
goto failure;
}
// Offset detail vertices, unnecassary?
for (int j = 0; j < nverts; ++j)
verts[j*3+1] += chf.ch;
// Store detail submesh.
const int ntris = tris.size()/4;
dmesh.meshes[i*4+0] = dmesh.nverts;
dmesh.meshes[i*4+1] = (unsigned short)nverts;
dmesh.meshes[i*4+2] = dmesh.ntris;
dmesh.meshes[i*4+3] = (unsigned short)ntris;
// Store vertices, allocate more memory if necessary.
if (dmesh.nverts+nverts > vcap)
{
while (dmesh.nverts+nverts > vcap)
vcap += 256;
float* newv = new float[vcap*3];
if (!newv)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
goto failure;
}
if (dmesh.nverts)
memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
delete [] dmesh.verts;
dmesh.verts = newv;
}
for (int j = 0; j < nverts; ++j)
{
dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
dmesh.nverts++;
}
// Store triangles, allocate more memory if necessary.
if (dmesh.ntris+ntris > tcap)
{
while (dmesh.ntris+ntris > tcap)
tcap += 256;
unsigned char* newt = new unsigned char[tcap*4];
if (!newt)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
goto failure;
}
if (dmesh.ntris)
memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
delete [] dmesh.tris;
dmesh.tris = newt;
}
for (int j = 0; j < ntris; ++j)
{
const int* t = &tris[j*4];
dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
dmesh.ntris++;
}
}
delete [] bounds;
delete [] poly;
rcTimeVal endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->buildDetailMesh += rcGetDeltaTimeUsec(startTime, endTime);
return true;
failure:
delete [] bounds;
delete [] poly;
return false;
}
bool rcMergePolyMeshDetails(rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
{
rcTimeVal startTime = rcGetPerformanceTimer();
int maxVerts = 0;
int maxTris = 0;
int maxMeshes = 0;
for (int i = 0; i < nmeshes; ++i)
{
if (!meshes[i]) continue;
maxVerts += meshes[i]->nverts;
maxTris += meshes[i]->ntris;
maxMeshes += meshes[i]->nmeshes;
}
mesh.nmeshes = 0;
mesh.meshes = new unsigned short[maxMeshes*4];
if (!mesh.meshes)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
return false;
}
mesh.ntris = 0;
mesh.tris = new unsigned char[maxTris*4];
if (!mesh.tris)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
return false;
}
mesh.nverts = 0;
mesh.verts = new float[maxVerts*3];
if (!mesh.verts)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
return false;
}
// Merge datas.
for (int i = 0; i < nmeshes; ++i)
{
rcPolyMeshDetail* dm = meshes[i];
if (!dm) continue;
for (int j = 0; j < dm->nmeshes; ++j)
{
unsigned short* dst = &mesh.meshes[mesh.nmeshes*4];
unsigned short* src = &dm->meshes[j*4];
dst[0] = mesh.nverts+src[0];
dst[1] = src[1];
dst[2] = mesh.ntris+src[2];
dst[3] = src[3];
mesh.nmeshes++;
}
for (int k = 0; k < dm->nverts; ++k)
{
vcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
mesh.nverts++;
}
for (int k = 0; k < dm->ntris; ++k)
{
mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
mesh.ntris++;
}
}
rcTimeVal endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->mergePolyMeshDetail += rcGetDeltaTimeUsec(startTime, endTime);
return true;
}

@ -0,0 +1,308 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastTimer.h"
#include "RecastLog.h"
inline bool overlapBounds(const float* amin, const float* amax, const float* bmin, const float* bmax)
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
return overlap;
}
inline bool overlapInterval(unsigned short amin, unsigned short amax,
unsigned short bmin, unsigned short bmax)
{
if (amax < bmin) return false;
if (amin > bmax) return false;
return true;
}
static rcSpan* allocSpan(rcHeightfield& hf)
{
// If running out of memory, allocate new page and update the freelist.
if (!hf.freelist || !hf.freelist->next)
{
// Create new page.
// Allocate memory for the new pool.
const int size = (sizeof(rcSpanPool)-sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
rcSpanPool* pool = reinterpret_cast<rcSpanPool*>(new unsigned char[size]);
if (!pool) return 0;
pool->next = 0;
// Add the pool into the list of pools.
pool->next = hf.pools;
hf.pools = pool;
// Add new items to the free list.
rcSpan* freelist = hf.freelist;
rcSpan* head = &pool->items[0];
rcSpan* it = &pool->items[RC_SPANS_PER_POOL];
do
{
--it;
it->next = freelist;
freelist = it;
}
while (it != head);
hf.freelist = it;
}
// Pop item from in front of the free list.
rcSpan* it = hf.freelist;
hf.freelist = hf.freelist->next;
return it;
}
static void freeSpan(rcHeightfield& hf, rcSpan* ptr)
{
if (!ptr) return;
// Add the node in front of the free list.
ptr->next = hf.freelist;
hf.freelist = ptr;
}
static void addSpan(rcHeightfield& hf, int x, int y,
unsigned short smin, unsigned short smax,
unsigned short flags)
{
int idx = x + y*hf.width;
rcSpan* s = allocSpan(hf);
s->smin = smin;
s->smax = smax;
s->flags = flags;
s->next = 0;
// Empty cell, add he first span.
if (!hf.spans[idx])
{
hf.spans[idx] = s;
return;
}
rcSpan* prev = 0;
rcSpan* cur = hf.spans[idx];
// Insert and merge spans.
while (cur)
{
if (cur->smin > s->smax)
{
// Current span is further than the new span, break.
break;
}
else if (cur->smax < s->smin)
{
// Current span is before the new span advance.
prev = cur;
cur = cur->next;
}
else
{
// Merge spans.
if (cur->smin < s->smin)
s->smin = cur->smin;
if (cur->smax > s->smax)
s->smax = cur->smax;
// Merge flags.
// if (s->smax == cur->smax)
if (rcAbs((int)s->smax - (int)cur->smax) <= 1)
s->flags |= cur->flags;
// Remove current span.
rcSpan* next = cur->next;
freeSpan(hf, cur);
if (prev)
prev->next = next;
else
hf.spans[idx] = next;
cur = next;
}
}
// Insert new span.
if (prev)
{
s->next = prev->next;
prev->next = s;
}
else
{
s->next = hf.spans[idx];
hf.spans[idx] = s;
}
}
static int clipPoly(const float* in, int n, float* out, float pnx, float pnz, float pd)
{
float d[12];
for (int i = 0; i < n; ++i)
d[i] = pnx*in[i*3+0] + pnz*in[i*3+2] + pd;
int m = 0;
for (int i = 0, j = n-1; i < n; j=i, ++i)
{
bool ina = d[j] >= 0;
bool inb = d[i] >= 0;
if (ina != inb)
{
float s = d[j] / (d[j] - d[i]);
out[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s;
out[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s;
out[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s;
m++;
}
if (inb)
{
out[m*3+0] = in[i*3+0];
out[m*3+1] = in[i*3+1];
out[m*3+2] = in[i*3+2];
m++;
}
}
return m;
}
static void rasterizeTri(const float* v0, const float* v1, const float* v2,
unsigned char flags, rcHeightfield& hf,
const float* bmin, const float* bmax,
const float cs, const float ics, const float ich)
{
const int w = hf.width;
const int h = hf.height;
float tmin[3], tmax[3];
const float by = bmax[1] - bmin[1];
// Calculate the bounding box of the triangle.
vcopy(tmin, v0);
vcopy(tmax, v0);
vmin(tmin, v1);
vmin(tmin, v2);
vmax(tmax, v1);
vmax(tmax, v2);
// If the triangle does not touch the bbox of the heightfield, skip the triagle.
if (!overlapBounds(bmin, bmax, tmin, tmax))
return;
// Calculate the footpring of the triangle on the grid.
int x0 = (int)((tmin[0] - bmin[0])*ics);
int y0 = (int)((tmin[2] - bmin[2])*ics);
int x1 = (int)((tmax[0] - bmin[0])*ics);
int y1 = (int)((tmax[2] - bmin[2])*ics);
x0 = rcClamp(x0, 0, w-1);
y0 = rcClamp(y0, 0, h-1);
x1 = rcClamp(x1, 0, w-1);
y1 = rcClamp(y1, 0, h-1);
// Clip the triangle into all grid cells it touches.
float in[7*3], out[7*3], inrow[7*3];
for (int y = y0; y <= y1; ++y)
{
// Clip polygon to row.
vcopy(&in[0], v0);
vcopy(&in[1*3], v1);
vcopy(&in[2*3], v2);
int nvrow = 3;
const float cz = bmin[2] + y*cs;
nvrow = clipPoly(in, nvrow, out, 0, 1, -cz);
if (nvrow < 3) continue;
nvrow = clipPoly(out, nvrow, inrow, 0, -1, cz+cs);
if (nvrow < 3) continue;
for (int x = x0; x <= x1; ++x)
{
// Clip polygon to column.
int nv = nvrow;
const float cx = bmin[0] + x*cs;
nv = clipPoly(inrow, nv, out, 1, 0, -cx);
if (nv < 3) continue;
nv = clipPoly(out, nv, in, -1, 0, cx+cs);
if (nv < 3) continue;
// Calculate min and max of the span.
float smin = in[1], smax = in[1];
for (int i = 1; i < nv; ++i)
{
smin = rcMin(smin, in[i*3+1]);
smax = rcMax(smax, in[i*3+1]);
}
smin -= bmin[1];
smax -= bmin[1];
// Skip the span if it is outside the heightfield bbox
if (smax < 0.0f) continue;
if (smin > by) continue;
// Clamp the span to the heightfield bbox.
if (smin < 0.0f) smin = bmin[1];
if (smax > by) smax = bmax[1];
// Snap the span to the heightfield height grid.
unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, 0x7fff);
unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), 0, 0x7fff);
addSpan(hf, x, y, ismin, ismax, flags);
}
}
}
void rcRasterizeTriangle(const float* v0, const float* v1, const float* v2,
unsigned char flags, rcHeightfield& solid)
{
rcTimeVal startTime = rcGetPerformanceTimer();
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
rasterizeTri(v0, v1, v2, flags, solid, solid.bmin, solid.bmax, solid.cs, ics, ich);
rcTimeVal endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->rasterizeTriangles += rcGetDeltaTimeUsec(startTime, endTime);
}
void rcRasterizeTriangles(const float* verts, int nv,
const int* tris, const unsigned char* flags, int nt,
rcHeightfield& solid)
{
rcTimeVal startTime = rcGetPerformanceTimer();
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
// Rasterize triangles.
for (int i = 0; i < nt; ++i)
{
const float* v0 = &verts[tris[i*3+0]*3];
const float* v1 = &verts[tris[i*3+1]*3];
const float* v2 = &verts[tris[i*3+2]*3];
// Rasterize.
rasterizeTri(v0, v1, v2, flags[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich);
}
rcTimeVal endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->rasterizeTriangles += rcGetDeltaTimeUsec(startTime, endTime);
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,58 @@
#include "RecastTimer.h"
#if defined(WIN32)
// Win32
#include <windows.h>
rcTimeVal rcGetPerformanceTimer()
{
__int64 count;
QueryPerformanceCounter((LARGE_INTEGER*)&count);
return count;
}
int rcGetDeltaTimeUsec(rcTimeVal start, rcTimeVal end)
{
static __int64 freq = 0;
if (freq == 0)
QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
__int64 elapsed = end - start;
return (int)(elapsed*1000000 / freq);
}
#elif defined(__MACH__)
// OSX
#include <mach/mach_time.h>
rcTimeVal rcGetPerformanceTimer()
{
return mach_absolute_time();
}
int rcGetDeltaTimeUsec(rcTimeVal start, rcTimeVal end)
{
static mach_timebase_info_data_t timebaseInfo;
if (timebaseInfo.denom == 0)
mach_timebase_info(&timebaseInfo);
uint64_t elapsed = end - start;
uint64_t nanosec = elapsed * timebaseInfo.numer / timebaseInfo.denom;
return (int)(nanosec / 1000);
}
#else
// TODO: Linux, etc
rcTimeVal rcGetPerformanceTimer()
{
return 0;
}
int rcGetDeltaTimeUsec(rcTimeVal start, rcTimeVal end)
{
return 0;
}
#endif

@ -0,0 +1,275 @@
<?xml version="1.0" encoding="windows-1251"?>
<VisualStudioProject
ProjectType="Visual C++"
Version="9.00"
Name="EXT_recastnavigation"
ProjectGUID="{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}"
RootNamespace="EXT_recastnavigation"
Keyword="Win32Proj"
TargetFrameworkVersion="196613"
>
<Platforms>
<Platform
Name="Win32"
/>
</Platforms>
<ToolFiles>
</ToolFiles>
<Configurations>
<Configuration
Name="Debug|Win32"
OutputDirectory="..\..\..\..\..\build\msvc_9\extern\recastnavigation\debug"
IntermediateDirectory="..\..\..\..\..\build\msvc_9\extern\recastnavigation\debug"
ConfigurationType="4"
CharacterSet="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="0"
AdditionalIncludeDirectories="../../Recast/Include; ../../Detour/Include"
PreprocessorDefinitions="WIN32;_DEBUG;_WINDOWS"
MinimalRebuild="true"
BasicRuntimeChecks="3"
RuntimeLibrary="1"
UsePrecompiledHeader="0"
WarningLevel="3"
DebugInformationFormat="4"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLibrarianTool"
OutputFile="..\..\..\..\..\build\msvc_9\libs\extern\debug\RecastNavigation.lib"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCPostBuildEventTool"
CommandLine="ECHO Copying header files&#x0D;&#x0A;IF NOT EXIST ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour MKDIR ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour&#x0D;&#x0A;IF NOT EXIST ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour\Include MKDIR ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour\Include&#x0D;&#x0A;IF NOT EXIST ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast\ MKDIR ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast&#x0D;&#x0A;IF NOT EXIST ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast\Include MKDIR ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast\Include&#x0D;&#x0A;&#x0D;&#x0A;XCOPY /Y ..\..\Detour\Include\*.h ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour\Include&#x0D;&#x0A;XCOPY /Y ..\..\Recast\Include\*.h ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast\Include&#x0D;&#x0A;&#x0D;&#x0A;ECHO Done"
/>
</Configuration>
<Configuration
Name="Release|Win32"
OutputDirectory="..\..\..\..\..\build\msvc_9\extern\recastnavigation\release"
IntermediateDirectory="..\..\..\..\..\build\msvc_9\extern\recastnavigation\release"
ConfigurationType="4"
CharacterSet="1"
WholeProgramOptimization="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="2"
EnableIntrinsicFunctions="true"
AdditionalIncludeDirectories="../../Recast/Include; ../../Detour/Include"
PreprocessorDefinitions="WIN32;NDEBUG;_WINDOWS"
RuntimeLibrary="0"
EnableFunctionLevelLinking="true"
UsePrecompiledHeader="0"
WarningLevel="3"
DebugInformationFormat="3"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLibrarianTool"
OutputFile="..\..\..\..\..\build\msvc_9\libs\extern\release\RecastNavigation.lib"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCPostBuildEventTool"
CommandLine="ECHO Copying header files&#x0D;&#x0A;IF NOT EXIST ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour MKDIR ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour&#x0D;&#x0A;IF NOT EXIST ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour\Include MKDIR ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour\Include&#x0D;&#x0A;IF NOT EXIST ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast\ MKDIR ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast&#x0D;&#x0A;IF NOT EXIST ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast\Include MKDIR ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast\Include&#x0D;&#x0A;&#x0D;&#x0A;XCOPY /Y ..\..\Detour\Include\*.h ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Detour\Include&#x0D;&#x0A;XCOPY /Y ..\..\Recast\Include\*.h ..\..\..\..\..\build\msvc_9\extern\recastnavigation\Recast\Include&#x0D;&#x0A;&#x0D;&#x0A;ECHO Done"
/>
</Configuration>
</Configurations>
<References>
</References>
<Files>
<Filter
Name="Recast"
>
<Filter
Name="Include"
>
<File
RelativePath="..\..\Recast\Include\Recast.h"
>
</File>
<File
RelativePath="..\..\Recast\Include\RecastLog.h"
>
</File>
<File
RelativePath="..\..\Recast\Include\RecastTimer.h"
>
</File>
</Filter>
<Filter
Name="Source"
>
<File
RelativePath="..\..\Recast\Source\Recast.cpp"
>
</File>
<File
RelativePath="..\..\Recast\Source\RecastContour.cpp"
>
</File>
<File
RelativePath="..\..\Recast\Source\RecastFilter.cpp"
>
</File>
<File
RelativePath="..\..\Recast\Source\RecastLog.cpp"
>
</File>
<File
RelativePath="..\..\Recast\Source\RecastMesh.cpp"
>
</File>
<File
RelativePath="..\..\Recast\Source\RecastMeshDetail.cpp"
>
</File>
<File
RelativePath="..\..\Recast\Source\RecastRasterization.cpp"
>
</File>
<File
RelativePath="..\..\Recast\Source\RecastRegion.cpp"
>
</File>
<File
RelativePath="..\..\Recast\Source\RecastTimer.cpp"
>
</File>
</Filter>
</Filter>
<Filter
Name="Detour"
>
<Filter
Name="Include"
>
<File
RelativePath="..\..\Detour\Include\DetourCommon.h"
>
</File>
<File
RelativePath="..\..\Detour\Include\DetourNode.h"
>
</File>
<File
RelativePath="..\..\Detour\Include\DetourStatNavMesh.h"
>
</File>
<File
RelativePath="..\..\Detour\Include\DetourStatNavMeshBuilder.h"
>
</File>
<File
RelativePath="..\..\Detour\Include\DetourTileNavMesh.h"
>
</File>
<File
RelativePath="..\..\Detour\Include\DetourTileNavMeshBuilder.h"
>
</File>
</Filter>
<Filter
Name="Source"
>
<File
RelativePath="..\..\Detour\Source\DetourCommon.cpp"
>
</File>
<File
RelativePath="..\..\Detour\Source\DetourNode.cpp"
>
</File>
<File
RelativePath="..\..\Detour\Source\DetourStatNavMesh.cpp"
>
</File>
<File
RelativePath="..\..\Detour\Source\DetourStatNavMeshBuilder.cpp"
>
</File>
<File
RelativePath="..\..\Detour\Source\DetourTileNavMesh.cpp"
>
</File>
<File
RelativePath="..\..\Detour\Source\DetourTileNavMeshBuilder.cpp"
>
</File>
</Filter>
</Filter>
</Files>
<Globals>
</Globals>
</VisualStudioProject>

@ -19,6 +19,7 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "blender", "blender.vcproj",
{7495FE37-933A-4AC1-BB2A-B3FDB4DE4284} = {7495FE37-933A-4AC1-BB2A-B3FDB4DE4284}
{51FB3D48-2467-4BFA-A321-D848252B437E} = {51FB3D48-2467-4BFA-A321-D848252B437E}
{FFD3C64A-30E2-4BC7-BC8F-51818C320400} = {FFD3C64A-30E2-4BC7-BC8F-51818C320400}
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6} = {FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}
{31628053-825D-4C06-8A21-D13883489718} = {31628053-825D-4C06-8A21-D13883489718}
{EADC3C5A-6C51-4F03-8038-1553E7D7F740} = {EADC3C5A-6C51-4F03-8038-1553E7D7F740}
{59567A5B-F63A-4A5C-B33A-0A45C300F4DC} = {59567A5B-F63A-4A5C-B33A-0A45C300F4DC}
@ -340,6 +341,8 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "BF_collada", "collada\BF_co
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "BL_modifiers", "modifiers\modifiers.vcproj", "{7CB0C521-91E0-40CE-A7C4-45FEA7ABE8BC}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "EXT_recastnavigation", "..\..\extern\recastnavigation\make\msvc_9_0\recastnavigation.vcproj", "{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
3D Plugin Debug|Win32 = 3D Plugin Debug|Win32
@ -1617,6 +1620,26 @@ Global
{7CB0C521-91E0-40CE-A7C4-45FEA7ABE8BC}.Debug|Win32.Build.0 = Blender Debug|Win32
{7CB0C521-91E0-40CE-A7C4-45FEA7ABE8BC}.Release|Win32.ActiveCfg = Blender Release|Win32
{7CB0C521-91E0-40CE-A7C4-45FEA7ABE8BC}.Release|Win32.Build.0 = Blender Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.3D Plugin Debug|Win32.ActiveCfg = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.3D Plugin Debug|Win32.Build.0 = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.3D Plugin Release|Win32.ActiveCfg = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.3D Plugin Release|Win32.Build.0 = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.3DPlugin Debug|Win32.ActiveCfg = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.3DPlugin Debug|Win32.Build.0 = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.3DPlugin Release|Win32.ActiveCfg = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.3DPlugin Release|Win32.Build.0 = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.Blender Debug|Win32.ActiveCfg = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.Blender Debug|Win32.Build.0 = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.Blender Release|Win32.ActiveCfg = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.Blender Release|Win32.Build.0 = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.BlenderPlayer Debug|Win32.ActiveCfg = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.BlenderPlayer Debug|Win32.Build.0 = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.BlenderPlayer Release|Win32.ActiveCfg = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.BlenderPlayer Release|Win32.Build.0 = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.Debug|Win32.ActiveCfg = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.Debug|Win32.Build.0 = Debug|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.Release|Win32.ActiveCfg = Release|Win32
{FB55B14E-D38E-4D04-BA7B-748EBC97FDB6}.Release|Win32.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE