Added a 2d convex hull function to BPyMathutils

Added a 2D Line intersection function
Added a function to BPyMesh that gets the mesh space vertex location of a Faces UV Pixel.
This commit is contained in:
Campbell Barton 2006-05-28 10:44:29 +00:00
parent e47719d253
commit 98b2e98c79
2 changed files with 194 additions and 2 deletions

@ -121,3 +121,148 @@ def genrand():
return ( float(y) / 0xffffffffL ) # reals
#------ Mersenne Twister -- end
""" 2d convexhull
Based from Dinu C. Gherman's work,
modified for Blender/Mathutils by Campell Barton
"""
######################################################################
# Public interface
######################################################################
from Blender.Mathutils import DotVecs
def convexHull(point_list_2d):
"""Calculate the convex hull of a set of vectors
The vectors can be 3 or 4d but only the Xand Y are used.
returns a list of convex hull indicies to the given point list
"""
######################################################################
# Helpers
######################################################################
def _myDet(p, q, r):
"""Calc. determinant of a special matrix with three 2D points.
The sign, "-" or "+", determines the side, right or left,
respectivly, on which the point r lies, when measured against
a directed vector from p to q.
"""
return (q.x*r.y + p.x*q.y + r.x*p.y) - (q.x*p.y + r.x*q.y + p.x*r.y)
def _isRightTurn((p, q, r)):
"Do the vectors pq:qr form a right turn, or not?"
#assert p[0] != q[0] and q[0] != r[0] and p[0] != r[0]
if _myDet(p[0], q[0], r[0]) < 0:
return 1
else:
return 0
# Get a local list copy of the points and sort them lexically.
points = [(p, i) for i, p in enumerate(point_list_2d)]
points.sort(lambda a,b: cmp((a[0].x, a[0].y), (b[0].x, b[0].y)))
# Build upper half of the hull.
upper = [points[0], points[1]] # cant remove these.
for i in xrange(len(points)-2):
upper.append(points[i+2])
while len(upper) > 2 and not _isRightTurn(upper[-3:]):
del upper[-2]
# Build lower half of the hull.
points.reverse()
lower = [points.pop(0), points.pop(1)]
for p in points:
lower.append(p)
while len(lower) > 2 and not _isRightTurn(lower[-3:]):
del lower[-2]
# Concatenate both halfs and return.
return [p[1] for ls in (upper, lower) for p in ls]
def lineIntersect2D(v1a, v1b, v2a, v2b):
'''
Do 2 lines intersect, if so where.
If there is an error, the retured X value will be None
the y will be an error code- usefull when debugging.
the first line is (v1a, v1b)
the second is (v2a, v2b)
by Campbell Barton
This function accounts for all known cases of 2 lines ;)
'''
x1,y1= v1a.x, v1a.y
x2,y2= v1b.x, v1b.y
_x1,_y1= v2a.x, v2a.y
_x2,_y2= v2b.x, v2b.y
# Bounding box intersection first.
if min(x1, x2) > max(_x1, _x2) or \
max(x1, x2) < min(_x1, _x2) or \
min(y1, y2) > max(_y1, _y2) or \
max(y1, y2) < min(_y1, _y2):
return None, 100 # Basic Bounds intersection TEST returns false.
# are either of the segments points? Check Seg1
if abs(x1 - x2) + abs(y1 - y2) <= SMALL_NUM:
return None, 101
# are either of the segments points? Check Seg2
if abs(_x1 - _x2) + abs(_y1 - _y2) <= SMALL_NUM:
return None, 102
# Make sure the HOZ/Vert Line Comes first.
if abs(_x1 - _x2) < SMALL_NUM or abs(_y1 - _y2) < SMALL_NUM:
x1, x2, y1, y2, _x1, _x2, _y1, _y2 = _x1, _x2, _y1, _y2, x1, x2, y1, y2
if abs(x2-x1) < SMALL_NUM: # VERTICLE LINE
if abs(_x2-_x1) < SMALL_NUM: # VERTICLE LINE SEG2
return None, 111 # 2 verticle lines dont intersect.
elif abs(_y2-_y1) < SMALL_NUM:
return x1, _y1 # X of vert, Y of hoz. no calculation.
yi = ((_y1 / abs(_x1 - _x2)) * abs(_x2 - x1)) + ((_y2 / abs(_x1 - _x2)) * abs(_x1 - x1))
if yi > max(y1, y2): # New point above seg1's vert line
return None, 112
elif yi < min(y1, y2): # New point below seg1's vert line
return None, 113
return x1, yi # Intersecting.
if abs(y2-y1) < SMALL_NUM: # HOZ LINE
if abs(_y2-_y1) < SMALL_NUM: # HOZ LINE SEG2
return None, 121 # 2 hoz lines dont intersect.
# Can skip vert line check for seg 2 since its covered above.
xi = ((_x1 / abs(_y1 - _y2)) * abs(_y2 - y1)) + ((_x2 / abs(_y1 - _y2)) * abs(_y1 - y1))
if xi > max(x1, x2): # New point right of seg1's hoz line
return None, 112
elif xi < min(x1, x2): # New point left of seg1's hoz line
return None, 113
return xi, y1 # Intersecting.
# Accounted for hoz/vert lines. Go on with both anglular.
b1 = (y2-y1)/(x2-x1)
b2 = (_y2-_y1)/(_x2-_x1)
a1 = y1-b1*x1
a2 = _y1-b2*_x1
if b1 - b2 == 0.0:
return None, 200
xi = - (a1-a2)/(b1-b2)
yi = a1+b1*xi
if (x1-xi)*(xi-x2) >= 0 and (_x1-xi)*(xi-_x2) >= 0 and (y1-yi)*(yi-y2) >= 0 and (_y1-yi)*(yi-_y2)>=0:
return xi, yi
else:
return None, 300

@ -190,6 +190,54 @@ def getMeshFromObject(ob, container_mesh=None, apply_modifiers=True, vgroups=Tru
return mesh
#============================================================================#
# Takes a face, and a pixel x/y on the image and returns a worldspace x/y/z #
# will return none if the pixel is not inside the faces UV #
#============================================================================#
def getUvPixelLoc(face, pxLoc, img_size = None, uvArea = None):
TriangleArea= Blender.Mathutils.TriangleArea
Vector= Blender.Mathutils.Vector
if not img_size:
w,h = face.image.size
else:
w,h= img_size
scaled_uvs= [Vector(uv.x*w, uv.y*h) for uv in f.uv]
if len(scaled_uvs)==3:
indicies= ((0,1,2),)
else:
indicies= ((0,1,2), (0,2,3))
for fidxs in indicies:
for i1,i2,i3 in fidxs:
# IS a point inside our triangle?
# UVArea could be cached?
uv_area = TriangleArea(scaled_uvs[i1], scaled_uvs[i2], scaled_uvs[i3])
area0 = TriangleArea(pxLoc, scaled_uvs[i2], scaled_uvs[i3])
area1 = TriangleArea(pxLoc, scaled_uvs[i1], scaled_uvs[i3])
area2 = TriangleArea(pxLoc, scaled_uvs[i1], scaled_uvs[i2])
if area0 + area1 + area2 > uv_area + 1: # 1 px bleed/error margin.
pass # if were a quad the other side may contain the pixel so keep looking.
else:
# We know the point is in the tri
area0 /= uv_area
area1 /= uv_area
area2 /= uv_area
# New location
return Vector(\
face.v[i1].co[0]*area0 + face.v[i2].co[0]*area1 + face.v[i3].co[0]*area2,\
face.v[i1].co[1]*area0 + face.v[i2].co[1]*area1 + face.v[i3].co[1]*area2,\
face.v[i1].co[2]*area0 + face.v[i2].co[2]*area1 + face.v[i3].co[2]*area2\
)
return None
type_tuple= type( (0,) )
type_list= type( [] )
def ngon(from_data, indices):
@ -230,8 +278,7 @@ def ngon(from_data, indices):
oldmode = Mesh.Mode()
Mesh.Mode(Mesh.SelectModes['VERTEX'])
for v in temp_mesh.verts:
v.sel= 1
temp_mesh.sel= True # Select all verst
# Must link to scene
scn= Scene.GetCurrent()