BGE soft body: change welding option to disable welding check by default: speeds up shape conversion. This is fine if the object has no duplicate vertices. Otherwise, bullet will be extremely slow and you can either set some welding or remove duplicates in the mesh. Welding is now displayed in linear scale: 0.0 -> 0.01, no need to use logarithmic scale ;-). Fix a bug with Bullet by which vertex array for soft body must have 3xfloat stride.

This commit is contained in:
Benoit Bolsee 2009-04-27 22:21:42 +00:00
parent fa826774a3
commit d4f8b416e9
6 changed files with 43 additions and 47 deletions

@ -82,7 +82,7 @@ BulletSoftBody *bsbNew(void)
bsb->collisionflags = 0;
//bsb->collisionflags = OB_BSB_COL_CL_RS + OB_BSB_COL_CL_SS;
bsb->numclusteriterations = 64;
bsb->welding = -4.f;
bsb->welding = 0.f;
return bsb;
}

@ -119,7 +119,7 @@ typedef struct BulletSoftBody {
float kAHR; /* Anchors hardness [0,1] */
int collisionflags; /* Vertex/Face or Signed Distance Field(SDF) or Clusters, Soft versus Soft or Rigid */
int numclusteriterations; /* number of iterations to refine collision clusters*/
float welding; /* welding limit to remove duplicate/nearby vertices, 0.0000001..0.01 */
float welding; /* welding limit to remove duplicate/nearby vertices, 0.0..0.01 */
} BulletSoftBody;
/* BulletSoftBody.flag */

@ -3104,12 +3104,9 @@ static uiBlock *advanced_bullet_menu(void *arg_ob)
uiBlockEndAlign(block);
yco -= 20;
xco = 0;
if (ob->bsoft->welding == 0.f)
ob->bsoft->welding = -4.f;
uiDefButF(block, NUMSLI, 0, "Welding(10^) ",
xco, yco, 360, 19, &ob->bsoft->welding, -7.f, -2.f, 10, 2,
"Threshold to remove duplicate/nearby vertices. Displayed in logarithmic scale for readability: linear values from 0.0000001 to 0.01");
uiDefButF(block, NUMSLI, 0, "Welding ",
xco, yco, 360, 19, &ob->bsoft->welding, 0.f, 0.01f, 10, 4,
"Welding threshold: distance between nearby vertices to be considered equal => set to 0.0 to disable welding test and speed up scene loading (ok if the mesh has no duplicates)");
/*
//too complex tweaking, disable for now

@ -1418,10 +1418,7 @@ void BL_CreatePhysicsObjectNew(KX_GameObject* gameobj,
objprop.m_soft_kAHR= blenderobject->bsoft->kAHR; /* Anchors hardness [0,1] */
objprop.m_soft_collisionflags= blenderobject->bsoft->collisionflags; /* Vertex/Face or Signed Distance Field(SDF) or Clusters, Soft versus Soft or Rigid */
objprop.m_soft_numclusteriterations= blenderobject->bsoft->numclusteriterations; /* number of iterations to refine collision clusters*/
if (blenderobject->bsoft->welding == 0.f)
objprop.m_soft_welding = 0.0001f; /* welding */
else
objprop.m_soft_welding = pow(10.f,blenderobject->bsoft->welding); /* welding */
objprop.m_soft_welding = blenderobject->bsoft->welding; /* welding */
} else
{
@ -1461,7 +1458,7 @@ void BL_CreatePhysicsObjectNew(KX_GameObject* gameobj,
objprop.m_soft_kAHR= 0.7f;
objprop.m_soft_collisionflags= OB_BSB_COL_SDF_RS + OB_BSB_COL_VF_SS;
objprop.m_soft_numclusteriterations= 16;
objprop.m_soft_welding = 0.0001f;
objprop.m_soft_welding = 0.f;
}
}

@ -1368,9 +1368,9 @@ bool CcdShapeConstructionInfo::SetMesh(RAS_MeshObject* meshobj, bool polytope,bo
}
}
m_vertexArray.resize(tot_bt_verts);
m_vertexArray.resize(tot_bt_verts*3);
btVector3 *bt= &m_vertexArray[0];
btScalar *bt= &m_vertexArray[0];
for (int p2=0; p2<numpolys; p2++)
{
@ -1388,8 +1388,9 @@ bool CcdShapeConstructionInfo::SetMesh(RAS_MeshObject* meshobj, bool polytope,bo
const float* vtx = v->getXYZ();
vert_tag_array[orig_index]= false;
bt->setX(vtx[0]); bt->setY(vtx[1]); bt->setZ(vtx[2]);
bt++;
*bt++ = vtx[0];
*bt++ = vtx[1];
*bt++ = vtx[2];
}
}
}
@ -1421,11 +1422,11 @@ bool CcdShapeConstructionInfo::SetMesh(RAS_MeshObject* meshobj, bool polytope,bo
}
}
m_vertexArray.resize(tot_bt_verts);
m_vertexArray.resize(tot_bt_verts*3);
m_polygonIndexArray.resize(tot_bt_tris);
m_triFaceArray.resize(tot_bt_tris*3);
btVector3 *bt= &m_vertexArray[0];
btScalar *bt= &m_vertexArray[0];
int *poly_index_pt= &m_polygonIndexArray[0];
int *tri_pt= &m_triFaceArray[0];
@ -1459,20 +1460,23 @@ bool CcdShapeConstructionInfo::SetMesh(RAS_MeshObject* meshobj, bool polytope,bo
if (vert_tag_array[i1]==true) { /* *** v1 *** */
vert_tag_array[i1]= false;
vtx = v1->getXYZ();
bt->setX(vtx[0]); bt->setY( vtx[1]); bt->setZ(vtx[2]);
bt++;
*bt++ = vtx[0];
*bt++ = vtx[1];
*bt++ = vtx[2];
}
if (vert_tag_array[i2]==true) { /* *** v2 *** */
vert_tag_array[i2]= false;
vtx = v2->getXYZ();
bt->setX(vtx[0]); bt->setY(vtx[1]); bt->setZ(vtx[2]);
bt++;
*bt++ = vtx[0];
*bt++ = vtx[1];
*bt++ = vtx[2];
}
if (vert_tag_array[i3]==true) { /* *** v3 *** */
vert_tag_array[i3]= false;
vtx = v3->getXYZ();
bt->setX(vtx[0]); bt->setY(vtx[1]); bt->setZ(vtx[2]);
bt++;
*bt++ = vtx[0];
*bt++ = vtx[1];
*bt++ = vtx[2];
}
if (poly->VertexCount()==4)
@ -1493,8 +1497,9 @@ bool CcdShapeConstructionInfo::SetMesh(RAS_MeshObject* meshobj, bool polytope,bo
if (vert_tag_array[i4]==true) { /* *** v4 *** */
vert_tag_array[i4]= false;
vtx = v4->getXYZ();
bt->setX(vtx[0]); bt->setY(vtx[1]); bt->setZ(vtx[2]);
bt++;
*bt++ = vtx[0];
*bt++ = vtx[1];
*bt++ = vtx[2];
}
}
}
@ -1577,7 +1582,7 @@ btCollisionShape* CcdShapeConstructionInfo::CreateBulletShape()
break;
case PHY_SHAPE_POLYTOPE:
collisionShape = new btConvexHullShape(&m_vertexArray[0].getX(), m_vertexArray.size());
collisionShape = new btConvexHullShape(&m_vertexArray[0], m_vertexArray.size()/3, 3*sizeof(btScalar));
break;
case PHY_SHAPE_MESH:
@ -1594,9 +1599,9 @@ btCollisionShape* CcdShapeConstructionInfo::CreateBulletShape()
m_polygonIndexArray.size(),
&m_triFaceArray[0],
3*sizeof(int),
m_vertexArray.size(),
(btScalar*) &m_vertexArray[0].x(),
sizeof(btVector3)
m_vertexArray.size()/3,
&m_vertexArray[0],
3*sizeof(btScalar)
);
btGImpactMeshShape* gimpactShape = new btGImpactMeshShape(indexVertexArrays);
@ -1619,12 +1624,13 @@ btCollisionShape* CcdShapeConstructionInfo::CreateBulletShape()
bool removeDuplicateVertices=true;
// m_vertexArray not in multiple of 3 anymore, use m_triFaceArray
for(int i=0; i<m_triFaceArray.size(); i+=3) {
collisionMeshData->addTriangle(
m_vertexArray[m_triFaceArray[i]],
m_vertexArray[m_triFaceArray[i+1]],
m_vertexArray[m_triFaceArray[i+2]],
removeDuplicateVertices
);
btScalar *bt = &m_vertexArray[3*m_triFaceArray[i]];
btVector3 v1(bt[0], bt[1], bt[2]);
bt = &m_vertexArray[3*m_triFaceArray[i+1]];
btVector3 v2(bt[0], bt[1], bt[2]);
bt = &m_vertexArray[3*m_triFaceArray[i+2]];
btVector3 v3(bt[0], bt[1], bt[2]);
collisionMeshData->addTriangle(v1, v2, v3, removeDuplicateVertices);
}
indexVertexArrays = collisionMeshData;
@ -1634,9 +1640,9 @@ btCollisionShape* CcdShapeConstructionInfo::CreateBulletShape()
m_polygonIndexArray.size(),
&m_triFaceArray[0],
3*sizeof(int),
m_vertexArray.size(),
(btScalar*) &m_vertexArray[0].x(),
sizeof(btVector3));
m_vertexArray.size()/3,
&m_vertexArray[0],
3*sizeof(btScalar));
}
// this shape will be shared and not deleted until shapeInfo is deleted

@ -161,8 +161,8 @@ public:
btTransform m_childTrans;
btVector3 m_childScale;
void* m_userData;
btAlignedObjectArray<btVector3> m_vertexArray; // Contains both vertex array for polytope shape and
// triangle array for concave mesh shape.
btAlignedObjectArray<btScalar> m_vertexArray; // Contains both vertex array for polytope shape and
// triangle array for concave mesh shape. Each vertex is 3 consecutive values
// In this case a triangle is made of 3 consecutive points
std::vector<int> m_polygonIndexArray; // Contains the array of polygon index in the
// original mesh that correspond to shape triangles.
@ -173,11 +173,7 @@ public:
void setVertexWeldingThreshold1(float threshold)
{
m_weldingThreshold1 = threshold;
}
float getVertexWeldingThreshold1() const
{
return m_weldingThreshold1;
m_weldingThreshold1 = threshold*threshold;
}
protected:
static std::map<RAS_MeshObject*, CcdShapeConstructionInfo*> m_meshShapeMap;