BGE: Cleanup occlusion buffer in CcdPhysicsEnvironment.cpp

This patch cleanup spaces/braces and newlines.

Reviewers: moguri, kupoman

Reviewed By: moguri, kupoman

Subscribers: kupoman

Differential Revision: https://developer.blender.org/D1607
This commit is contained in:
Porteries Tristan 2015-11-05 12:34:31 +01:00
parent ebb2a78c7a
commit fcf8f01ca0

@ -1405,14 +1405,30 @@ struct OcclusionBuffer
{
struct WriteOCL
{
static inline bool Process(btScalar& q,btScalar v) { if (q<v) q=v;return(false); }
static inline void Occlusion(bool& flag) { flag = true; }
static inline bool Process(btScalar &q, btScalar v)
{
if (q < v) {
q = v;
}
return false;
}
static inline void Occlusion(bool &flag)
{
flag = true;
}
};
struct QueryOCL
{
static inline bool Process(btScalar& q,btScalar v) { return(q<=v); }
static inline void Occlusion(bool& flag) { }
static inline bool Process(btScalar &q, btScalar v)
{
return (q <= v);
}
static inline void Occlusion(bool &flag)
{
}
};
btScalar *m_buffer;
size_t m_bufferSize;
bool m_initialized;
@ -1455,16 +1471,15 @@ struct OcclusionBuffer
m[14] = btScalar(m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15]);
m[15] = btScalar(m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15]);
}
void setup(int size, const int *view, double modelview[16], double projection[16])
{
m_initialized = false;
m_occlusion = false;
// compute the size of the buffer
int maxsize;
double ratio;
maxsize = (view[2] > view[3]) ? view[2] : view[3];
int maxsize = (view[2] > view[3]) ? view[2] : view[3];
assert(maxsize > 0);
ratio = 1.0/(2*maxsize);
double ratio = 1.0 / (2 * maxsize);
// ensure even number
m_sizes[0] = 2 * ((int)(size * view[2] * ratio + 0.5));
m_sizes[1] = 2 * ((int)(size * view[3] * ratio + 0.5));
@ -1478,25 +1493,23 @@ struct OcclusionBuffer
// camera to clip transformation. combine both so that
CMmat4mul(m_wtc, projection, modelview);
}
void initialize()
{
size_t newsize = (m_sizes[0] * m_sizes[1]) * sizeof(btScalar);
if (m_buffer)
{
if (m_buffer) {
// see if we can reuse
if (newsize > m_bufferSize)
{
if (newsize > m_bufferSize) {
free(m_buffer);
m_buffer = NULL;
m_bufferSize = 0;
}
}
if (!m_buffer)
{
if (!m_buffer) {
m_buffer = (btScalar *)calloc(1, newsize);
m_bufferSize = newsize;
} else
{
}
else {
// buffer exists already, just clears it
memset(m_buffer, 0, newsize);
}
@ -1505,12 +1518,14 @@ struct OcclusionBuffer
m_initialized = true;
m_occlusion = false;
}
void SetModelMatrix(double *fl)
{
CMmat4mul(m_mtc,m_wtc,fl);
if (!m_initialized)
if (!m_initialized) {
initialize();
}
}
// transform a segment in world coordinate to clip coordinate
void transformW(const btVector3 &x, btVector4 &t)
@ -1520,6 +1535,7 @@ struct OcclusionBuffer
t[2] = x[0] * m_wtc[2] + x[1] * m_wtc[6] + x[2] * m_wtc[10] + m_wtc[14];
t[3] = x[0] * m_wtc[3] + x[1] * m_wtc[7] + x[2] * m_wtc[11] + m_wtc[15];
}
void transformM(const float *x, btVector4 &t)
{
t[0] = x[0] * m_mtc[0] + x[1] * m_mtc[4] + x[2] * m_mtc[8] + m_mtc[12];
@ -1530,13 +1546,12 @@ struct OcclusionBuffer
// convert polygon to device coordinates
static bool project(btVector4 *p, int n)
{
for (int i=0;i<n;++i)
{
for (int i = 0; i < n; ++i) {
p[i][2] = 1 / p[i][3];
p[i][0] *= p[i][2];
p[i][1] *= p[i][2];
}
return(true);
return true;
}
// pi: closed polygon in clip coordinate, NP = number of segments
// po: same polygon with clipped segments removed
@ -1547,67 +1562,71 @@ struct OcclusionBuffer
btVector4 pn[2 * NP];
int i, j, m, n, ni;
// deal with near clipping
for (i=0, m=0;i<NP;++i)
{
for (i = 0, m = 0; i < NP; ++i) {
s[i] = pi[i][2] + pi[i][3];
if (s[i]<0) m+=1<<i;
if (s[i] < 0) {
m += 1 << i;
}
if (m==((1<<NP)-1))
return(0);
if (m!=0)
{
for (i=NP-1,j=0,n=0;j<NP;i=j++)
{
}
if (m == ((1 << NP) - 1)) {
return 0;
}
if (m != 0) {
for (i = NP - 1, j = 0, n = 0; j < NP; i = j++) {
const btVector4 &a = pi[i];
const btVector4 &b = pi[j];
const btScalar t = s[i] / (a[3] + a[2] - b[3] - b[2]);
if ((t>0)&&(t<1))
{
if ((t > 0) && (t < 1)) {
pn[n][0] = a[0] + (b[0] - a[0]) * t;
pn[n][1] = a[1] + (b[1] - a[1]) * t;
pn[n][2] = a[2] + (b[2] - a[2]) * t;
pn[n][3] = a[3] + (b[3] - a[3]) * t;
++n;
}
if (s[j]>0) pn[n++]=b;
if (s[j] > 0) {
pn[n++] = b;
}
}
// ready to test far clipping, start from the modified polygon
pi = pn;
ni = n;
} else
{
}
else {
// no clipping on the near plane, keep same vector
ni = NP;
}
// now deal with far clipping
for (i=0, m=0;i<ni;++i)
{
for (i = 0, m = 0; i < ni; ++i) {
s[i] = pi[i][2] - pi[i][3];
if (s[i]>0) m+=1<<i;
if (s[i] > 0) {
m += 1 << i;
}
if (m==((1<<ni)-1))
return(0);
if (m!=0)
{
for (i=ni-1,j=0,n=0;j<ni;i=j++)
{
}
if (m == ((1 << ni) - 1)) {
return 0;
}
if (m != 0) {
for (i = ni - 1, j = 0, n = 0;j < ni; i = j++) {
const btVector4 &a = pi[i];
const btVector4 &b = pi[j];
const btScalar t = s[i] / (a[2] - a[3] - b[2] + b[3]);
if ((t>0)&&(t<1))
{
if ((t > 0) && (t < 1)) {
po[n][0] = a[0] + (b[0] - a[0]) * t;
po[n][1] = a[1] + (b[1] - a[1]) * t;
po[n][2] = a[2] + (b[2] - a[2]) * t;
po[n][3] = a[3] + (b[3] - a[3]) * t;
++n;
}
if (s[j]<0) po[n++]=b;
if (s[j] < 0) {
po[n++] = b;
}
return(n);
}
for (int i=0;i<ni;++i) po[i]=pi[i];
return(ni);
return n;
}
for (int i = 0; i < ni; ++i) {
po[i] = pi[i];
}
return ni;
}
// write or check a triangle to buffer. a,b,c in device coordinates (-1,+1)
template <typename POLICY>
@ -1618,8 +1637,9 @@ struct OcclusionBuffer
const btScalar minarea)
{
const btScalar a2 = btCross(b - a, c - a)[2];
if ((face*a2)<0.f || btFabs(a2)<minarea)
if ((face * a2) < 0.0f || btFabs(a2) < minarea) {
return false;
}
// further down we are normally going to write to the Zbuffer, mark it so
POLICY::Occlusion(m_occlusion);
@ -1628,8 +1648,7 @@ struct OcclusionBuffer
x[0] = (int)(a.x() * m_scales[0] + m_offsets[0]);
y[0] = (int)(a.y() * m_scales[1] + m_offsets[1]);
z[0] = a.z();
if (a2 < 0.f)
{
if (a2 < 0.f) {
// negative aire is possible with double face => must
// change the order of b and c otherwise the algorithm doesn't work
ib = 2;
@ -1647,21 +1666,21 @@ struct OcclusionBuffer
const int mxy = btMin(m_sizes[1], 1 + btMax(y[0], btMax(y[1], y[2])));
const int width = mxx - mix;
const int height = mxy - miy;
if ((width*height) <= 1)
{
if ((width * height) <= 1) {
// degenerated in at most one single pixel
btScalar *scan = &m_buffer[miy * m_sizes[0] + mix];
// use for loop to detect the case where width or height == 0
for (int iy=miy;iy<mxy;++iy)
{
for (int ix=mix;ix<mxx;++ix)
{
if (POLICY::Process(*scan,z[0]))
return(true);
if (POLICY::Process(*scan,z[1]))
return(true);
if (POLICY::Process(*scan,z[2]))
return(true);
for (int iy = miy; iy < mxy; ++iy) {
for (int ix = mix; ix < mxx; ++ix) {
if (POLICY::Process(*scan, z[0])) {
return true;
}
if (POLICY::Process(*scan, z[1])) {
return true;
}
if (POLICY::Process(*scan, z[2])) {
return true;
}
}
}
}
@ -1673,16 +1692,37 @@ struct OcclusionBuffer
// sort the y coord to make formula simpler
int ytmp;
btScalar ztmp;
if (y[0] > y[1]) { ytmp=y[1];y[1]=y[0];y[0]=ytmp;ztmp=z[1];z[1]=z[0];z[0]=ztmp; }
if (y[0] > y[2]) { ytmp=y[2];y[2]=y[0];y[0]=ytmp;ztmp=z[2];z[2]=z[0];z[0]=ztmp; }
if (y[1] > y[2]) { ytmp=y[2];y[2]=y[1];y[1]=ytmp;ztmp=z[2];z[2]=z[1];z[1]=ztmp; }
if (y[0] > y[1]) {
ytmp = y[1];
y[1] = y[0];
y[0] = ytmp;
ztmp = z[1];
z[1] = z[0];
z[0] = ztmp;
}
if (y[0] > y[2]) {
ytmp = y[2];
y[2] = y[0];
y[0] = ytmp;
ztmp = z[2];
z[2] = z[0];
z[0] = ztmp;
}
if (y[1] > y[2]) {
ytmp = y[2];
y[2] = y[1];
y[1] = ytmp;
ztmp = z[2];
z[2] = z[1];
z[1] = ztmp;
}
int dy[] = {y[0] - y[1],
y[1] - y[2],
y[2] - y[0]};
btScalar dzy[3];
dzy[0] = (dy[0]) ? (z[0] - z[1]) / dy[0] : btScalar(0.f);
dzy[1] = (dy[1]) ? (z[1] - z[2]) / dy[1] : btScalar(0.f);
dzy[2] = (dy[2]) ? (z[2] - z[0]) / dy[2] : btScalar(0.f);
dzy[0] = (dy[0]) ? (z[0] - z[1]) / dy[0] : btScalar(0.0f);
dzy[1] = (dy[1]) ? (z[1] - z[2]) / dy[1] : btScalar(0.0f);
dzy[2] = (dy[2]) ? (z[2] - z[0]) / dy[2] : btScalar(0.0f);
btScalar v[3] = {dzy[0] * (miy - y[0]) + z[0],
dzy[1] * (miy - y[1]) + z[1],
dzy[2] * (miy - y[2]) + z[2]};
@ -1690,36 +1730,63 @@ struct OcclusionBuffer
dy[1] = y[0] - y[1];
dy[2] = y[2] - y[0];
btScalar *scan = &m_buffer[miy * m_sizes[0] + mix];
for (int iy=miy;iy<mxy;++iy)
{
if (dy[0] >= 0 && POLICY::Process(*scan,v[0]))
return(true);
if (dy[1] >= 0 && POLICY::Process(*scan,v[1]))
return(true);
if (dy[2] >= 0 && POLICY::Process(*scan,v[2]))
return(true);
scan+=m_sizes[0];
v[0] += dzy[0]; v[1] += dzy[1]; v[2] += dzy[2];
dy[0]--; dy[1]++, dy[2]--;
for (int iy = miy; iy < mxy; ++iy) {
if (dy[0] >= 0 && POLICY::Process(*scan, v[0])) {
return true;
}
} else if (height == 1)
{
if (dy[1] >= 0 && POLICY::Process(*scan, v[1])) {
return true;
}
if (dy[2] >= 0 && POLICY::Process(*scan, v[2])) {
return true;
}
scan += m_sizes[0];
v[0] += dzy[0];
v[1] += dzy[1];
v[2] += dzy[2];
dy[0]--;
dy[1]++;
dy[2]--;
}
}
else if (height == 1) {
// Degenerated in at least 2 horizontal lines
// The algorithm below doesn't work when face has a single pixel width
// We cannot use general formulas because the plane is degenerated.
// We have to interpolate along the 3 edges that overlaps and process each pixel.
int xtmp;
btScalar ztmp;
if (x[0] > x[1]) { xtmp=x[1];x[1]=x[0];x[0]=xtmp;ztmp=z[1];z[1]=z[0];z[0]=ztmp; }
if (x[0] > x[2]) { xtmp=x[2];x[2]=x[0];x[0]=xtmp;ztmp=z[2];z[2]=z[0];z[0]=ztmp; }
if (x[1] > x[2]) { xtmp=x[2];x[2]=x[1];x[1]=xtmp;ztmp=z[2];z[2]=z[1];z[1]=ztmp; }
if (x[0] > x[1]) {
xtmp = x[1];
x[1] = x[0];
x[0] = xtmp;
ztmp = z[1];
z[1] = z[0];
z[0] = ztmp;
}
if (x[0] > x[2]) {
xtmp = x[2];
x[2] = x[0];
x[0] = xtmp;
ztmp = z[2];
z[2] = z[0];
z[0] = ztmp;
}
if (x[1] > x[2]) {
xtmp = x[2];
x[2] = x[1];
x[1] = xtmp;
ztmp = z[2];
z[2] = z[1];
z[1] = ztmp;
}
int dx[] = {x[0] - x[1],
x[1] - x[2],
x[2] - x[0]};
btScalar dzx[3];
dzx[0] = (dx[0]) ? (z[0]-z[1])/dx[0] : btScalar(0.f);
dzx[1] = (dx[1]) ? (z[1]-z[2])/dx[1] : btScalar(0.f);
dzx[2] = (dx[2]) ? (z[2]-z[0])/dx[2] : btScalar(0.f);
dzx[0] = (dx[0]) ? (z[0]-z[1]) / dx[0] : btScalar(0.0f);
dzx[1] = (dx[1]) ? (z[1]-z[2]) / dx[1] : btScalar(0.0f);
dzx[2] = (dx[2]) ? (z[2]-z[0]) / dx[2] : btScalar(0.0f);
btScalar v[3] = {dzx[0] * (mix - x[0]) + z[0],
dzx[1] * (mix - x[1]) + z[1],
dzx[2] * (mix - x[2]) + z[2]};
@ -1727,17 +1794,23 @@ struct OcclusionBuffer
dx[1] = x[0] - x[1];
dx[2] = x[2] - x[0];
btScalar *scan = &m_buffer[miy * m_sizes[0] + mix];
for (int ix=mix;ix<mxx;++ix)
{
if (dx[0] >= 0 && POLICY::Process(*scan,v[0]))
return(true);
if (dx[1] >= 0 && POLICY::Process(*scan,v[1]))
return(true);
if (dx[2] >= 0 && POLICY::Process(*scan,v[2]))
return(true);
for (int ix = mix; ix < mxx; ++ix) {
if (dx[0] >= 0 && POLICY::Process(*scan, v[0])) {
return true;
}
if (dx[1] >= 0 && POLICY::Process(*scan, v[1])) {
return true;
}
if (dx[2] >= 0 && POLICY::Process(*scan, v[2])) {
return true;
}
scan++;
v[0] += dzx[0]; v[1] += dzx[1]; v[2] += dzx[2];
dx[0]--; dx[1]++, dx[2]--;
v[0] += dzx[0];
v[1] += dzx[1];
v[2] += dzx[2];
dx[0]--;
dx[1]++;
dx[2]--;
}
}
else {
@ -1757,14 +1830,13 @@ struct OcclusionBuffer
miy * x[0] + mix * y[2] - x[0] * y[2] - mix * y[0] + x[2] * y[0] - miy * x[2]};
btScalar v = ia * ((z[2] * c[0]) + (z[0] * c[1]) + (z[1] * c[2]));
btScalar *scan = &m_buffer[miy * m_sizes[0]];
for (int iy=miy;iy<mxy;++iy)
{
for (int ix=mix;ix<mxx;++ix)
{
if ((c[0]>=0)&&(c[1]>=0)&&(c[2]>=0))
{
if (POLICY::Process(scan[ix],v))
return(true);
for (int iy = miy; iy < mxy; ++iy) {
for (int ix = mix; ix < mxx; ++ix) {
if ((c[0] >= 0) && (c[1] >= 0) && (c[2] >= 0)) {
if (POLICY::Process(scan[ix], v)) {
return true;
}
}
c[0] += dx[0]; c[1] += dx[1]; c[2] += dx[2]; v += dzx;
}
@ -1772,7 +1844,7 @@ struct OcclusionBuffer
scan += m_sizes[0];
}
}
return(false);
return false;
}
// clip than write or check a polygon
template <const int NP, typename POLICY>
@ -1783,15 +1855,13 @@ struct OcclusionBuffer
btVector4 o[NP * 2];
int n = clip<NP>(p, o);
bool earlyexit = false;
if (n)
{
if (n) {
project(o, n);
for (int i=2;i<n && !earlyexit;++i)
{
for (int i = 2; i < n && !earlyexit; ++i) {
earlyexit |= draw<POLICY>(o[0], o[i - 1], o[i], face, minarea);
}
}
return(earlyexit);
return earlyexit;
}
// add a triangle (in model coordinate)
// face = 0.f if face is double side,
@ -1806,7 +1876,7 @@ struct OcclusionBuffer
transformM(a, p[0]);
transformM(b, p[1]);
transformM(c, p[2]);
clipDraw<3,WriteOCL>(p,face,btScalar(0.f));
clipDraw<3, WriteOCL>(p, face, btScalar(0.0f));
}
// add a quad (in model coordinate)
void appendOccluderM(const float *a,
@ -1820,15 +1890,16 @@ struct OcclusionBuffer
transformM(b, p[1]);
transformM(c, p[2]);
transformM(d, p[3]);
clipDraw<4,WriteOCL>(p,face,btScalar(0.f));
clipDraw<4, WriteOCL>(p, face, btScalar(0.0f));
}
// query occluder for a box (c=center, e=extend) in world coordinate
inline bool queryOccluderW(const btVector3 &c,
const btVector3 &e)
{
if (!m_occlusion)
if (!m_occlusion) {
// no occlusion yet, no need to check
return true;
}
btVector4 x[8];
transformW(btVector3(c[0] - e[0], c[1] - e[1], c[2] - e[2]), x[0]);
transformW(btVector3(c[0] + e[0], c[1] - e[1], c[2] - e[2]), x[1]);
@ -1838,10 +1909,12 @@ struct OcclusionBuffer
transformW(btVector3(c[0] + e[0], c[1] - e[1], c[2] + e[2]), x[5]);
transformW(btVector3(c[0] + e[0], c[1] + e[1], c[2] + e[2]), x[6]);
transformW(btVector3(c[0] - e[0], c[1] + e[1], c[2] + e[2]), x[7]);
for (int i=0;i<8;++i)
{
for (int i = 0; i < 8; ++i) {
// the box is clipped, it's probably a large box, don't waste our time to check
if ((x[i][2]+x[i][3])<=0) return(true);
if ((x[i][2] + x[i][3]) <= 0) {
return true;
}
}
static const int d[] = {1, 0, 3, 2,
4, 5, 6, 7,