- ignore MSVC warnings when FREE_WINDOWS is defined to quiet warnings.
- the CMake flags were not being set correctly making blender have weirdo colors (no -funsigned-char).
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or
full scan. The logic engine is now free of memory allocation, which is
an important stability factor.
The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.
The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:
Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.
With the new system, the sequential execution of controllers is still
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.
If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.
Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
This commit extend the technique of dynamic linked list to the mesh
slots so as to eliminate dumb scan or map lookup. It provides massive
performance improvement in the culling and in the rasterizer when
the majority of objects are static.
Other improvements:
- Compute the opengl matrix only for objects that are visible.
- Simplify hash function for GEN_HasedPtr
- Scan light list instead of general object list to render shadows
- Remove redundant opengl calls to set specularity, shinyness and diffuse
between each mesh slots.
- Cache GPU material to avoid frequent call to GPU_material_from_blender
- Only set once the fixed elements of mesh slot
- Use more inline function
The following table shows the performance increase between 2.48, 1st round
and this round of improvement. The test was done with a scene containing
40000 objects, of which 1000 are in the view frustrum approximately. The
object are simple textured cube to make sure the GPU is not the bottleneck.
As some of the rasterizer processing time has moved under culling, I present
the sum of scenegraph(includes culling)+rasterizer time
Scenegraph+rasterizer(ms) 2.48 1st round 3rd round
All objects static, 323.0 86.0 7.2
all visible, 1000 in
the view frustrum
All objects static, 219.0 49.7 N/A(*)
all invisible.
All objects moving, 323.0 105.6 34.7
all visible, 1000 in
the view frustrum
Scene destruction 40min 40min 4s
(*) : this time is not representative because the frame rate was at 60fps.
In that case, the GPU holds down the GE by frame sync. By design, the
overhead of the rasterizer is 0 when the the objects are invisible.
This table shows a global speed up between 9x and 45x compared to 2.48a
for scenegraph, culling and rasterizer overhead. The speed up goes much
higher when objects are invisible.
An additional 2-4x speed up is possible in the scenegraph by upgrading
the Moto library to use Eigen2 BLAS library instead of C++ classes but
the scenegraph is already so fast that it is not a priority right now.
Next speed up in logic: many things to do there...
This commit contains a number of performance improvements for the
BGE in the Scenegraph (parent relation between objects in the
scene) and view frustrum culling.
The scenegraph improvement consists in avoiding position update
if the object has not moved since last update and the removal
of redundant updates and synchronization with the physics engine.
The view frustrum culling improvement consists in using the DBVT
broadphase facility of Bullet to build a tree of graphical objects
in the scene. The elements of the tree are Aabb boxes (Aligned
Axis Bounding Boxes) enclosing the objects. This provides good
precision in closed and opened scenes. This new culling system
is enabled by default but just in case, it can be disabled with
a button in the World settings. There is no do_version in this
commit but it will be added before the 2.49 release. For now you
must manually enable the DBVT culling option in World settings
when you open an old file.
The above improvements speed up scenegraph and culling up to 5x.
However, this performance improvement is only visible when
you have hundreds or thousands of objects.
The main interest of the DBVT tree is to allow easy occlusion
culling and automatic LOD system. This will be the object of further
improvements.
* Fix issue with add transparency mode with blender materials.
* Possible fix at frontface flip in the game engine.
* Fix color buffering clearing for multiple viewports, it used
to clear as if there was one.
* Fix for zoom level in user defined viewports, it was based on
the full window before, now it is based on the viewport itself.
* For user defined viewports, always use Expose instead of
Letterbox with bars, the latter doesn't make sense then.
the features that are needed to run the game. Compile tested with
scons, make, but not cmake, that seems to have an issue not related
to these changes. The changes include:
* GLSL support in the viewport and game engine, enable in the game
menu in textured draw mode.
* Synced and merged part of the duplicated blender and gameengine/
gameplayer drawing code.
* Further refactoring of game engine drawing code, especially mesh
storage changed a lot.
* Optimizations in game engine armatures to avoid recomputations.
* A python function to get the framerate estimate in game.
* An option take object color into account in materials.
* An option to restrict shadow casters to a lamp's layers.
* Increase from 10 to 18 texture slots for materials, lamps, word.
An extra texture slot shows up once the last slot is used.
* Memory limit for undo, not enabled by default yet because it
needs the .B.blend to be changed.
* Multiple undo for image painting.
* An offset for dupligroups, so not all objects in a group have to
be at the origin.
=======================================
Alpha blending + sorting was revised, to fix bugs and get it
to work more predictable.
* A new per texture face "Sort" setting defines if the face
is alpha sorted or not, instead of abusing the "ZTransp"
setting as it did before.
* Existing files are converted to hopefully match the old
behavior as much as possible with a version patch.
* On new meshes the Sort flag is disabled by the default, to
avoid unexpected and hard to find slowdowns.
* Alpha sorting for faces was incredibly slow. Sorting faces
in a mesh with 600 faces lowered the framerate from 200 to
70 fps in my test.. the sorting there case goes about 15x
faster now, but it is still advised to use Clip Alpha if
possible instead of regular Alpha.
* There still various limitations in the alpha sorting code,
I've added some comments to the code about this.
Some docs at the bottom of the page:
http://www.blender.org/development/current-projects/changes-since-246/realtime-glsl-materials/
Merged some fixes from the apricot branch, most important
change is that tangents are now exactly the same as the rest
of Blender, instead of being computed in the game engine with a
different algorithm.
Also, the subversion was bumped to 1.
=============================
* Clean up and optimizations in skinned/deformed mesh code.
* Compatibility fixes and clean up in the rasterizer.
* Changes related to GLSL shadow buffers which should have no
effect, to keep the code in sync with apricot.
This patch modifies the BL_ConvertMesh method from the data conversion module in order to reduce the number of polygon
material objects that are created.
Normally, there should be only one material object for each material bucket(the group of meshes that are rendered together
with a single material). However, the number of materials that are created right now in the converter is much higher
and eats a lot of memory in scenes with large polygon counts. This patch deletes those material objects(KX_BlenderMaterial)
that are used only temporarily in the converter(and are now deleted only when the converter is destroyed, at the end
of the game).
For a cube that's subdivided 7 times(90+ k polygons) I get 200 MB usage in the game engine in 2.45 and 44 MB with a
svn build with this patch applied if the "Use Blender Materials" option is activated in the Game menu.
Armatures are back
Split screen
Double sided lightning
Ambient lighting
Alpha test
Material IPO support (one per object atm)
Blender materials
GLSL shaders - Python access
Up to three texture samplers from the material panel ( 2D & Cube map )
Python access to a second set of uv coordinates
See http://www.elysiun.com/forum/viewtopic.php?t=58057
Depth sorting for Transparent polygons. Use ZTransp in Material buttons to enable.
This will cause an object's polygons to be sorted (back to front for alpha polygons, front to back for solid polygons.)
- Mesh Objects are sorted by depth (based on object centre.) Using object centre means the user has control over the sort.
- Polygons are not sorted.
- Polygons are not split.
- O(nlog(n))
[SCons] Build with Solid as default when enabling the gameengine in the build process
[SCons] Build solid and qhull from the extern directory and link statically against them
That was about it.
There are a few things that needs double checking:
* Makefiles
* Projectfiles
* All the other systems than Linux and Windows on which the build (with scons) has been successfully tested.