Commit Graph

36 Commits

Author SHA1 Message Date
Benoit Bolsee
386122ada6 BGE performance, 4th round: logic
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or 
full scan. The logic engine is now free of memory allocation, which is
an important stability factor. 

The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on 
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.

The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the 
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:

Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.

With the new system, the sequential execution of controllers is still 
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.

If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.

Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
2009-05-10 20:53:58 +00:00
Benoit Bolsee
be2c21bcdb BGE logic: new sensor "tap" option to generate automatically on/off pulses
When enabled, this option converts any positive trigger from the sensor
into a pair of positive+negative trigger, with the negative trigger sent
in the next frame. The negative trigger from the sensor are not passed
to the controller as the option automatically generates the negative triggers. 
From the controller point of view, the sensor is positive only for 1 frame, 
even if the underlying sensor state remains positive.

The option interacts with the other sensor option in this way:
- Level option: tap option is mutually exclusive with level option. Both
  cannot be enabled at the same time.
- Invert option: tap option operates on the negative trigger of the 
  sensor, which are converted to positive trigger by the invert option.
  Hence, the controller will see the sensor positive for 1 frame when 
  the underlying sensor state turns negative. 
- Positive pulse option: tap option adds a negative trigger after each
  repeated positive pulse, unless the frequency option is 0, in which case
  positive pulse are generated on every frame as before, as long as the
  underlying sensor state is positive.
- Negative pulse option: this option is not compatible with tap option
  and is ignored when tap option is enabled.

Notes:
- Keyboard "All keys" is handled specially when tap option is set:
  There will be one pair of positive/negative trigger for each new 
  key press, regardless on how many keys are already pressed and there
  is no trigger when keys are released, regardless if keys are still
  pressed. 
  In case two keys are pressed in succesive frames, there will
  be 2 positive triggers and 1 negative trigger in the following frame.
2009-05-04 22:21:02 +00:00
Campbell Barton
81dfdf8374 ifdef's for future py3 support, after this adding py3 can mostly be done with defines or batch renaming funcs (with the exception of CListValue slicing)
.
No changes for py2.x.
2009-04-29 16:54:45 +00:00
Campbell Barton
e8f5c75005 patch from Mitchell Stokes, comments only - KX_PYATTRIBUTE_TODO for missing attributes 2009-04-23 00:47:45 +00:00
Campbell Barton
217bbb7800 BGE Python API
Separate getting a normal attribute and getting __dict__, was having to do too a check for __dict__ on each class (multiple times per getattro call from python) when its not used that often.
2009-04-20 23:17:52 +00:00
Campbell Barton
6bc162e679 BGE Python API
removed redundant (PyObject *self) argument from python functions that are not exposed to python directly.
2009-04-19 17:29:07 +00:00
Campbell Barton
7dbc9dc719 BGE Python API cleanup - no functionality changes
- comments to PyObjectPlus.h
- remove unused/commented junk.
- renamed PyDestructor to py_base_dealloc for consistency
- all the PyTypeObject's were still using the sizeof() their class, can use sizeof(PyObjectPlus_Proxy) now which is smaller too.
2009-04-19 14:57:52 +00:00
Campbell Barton
33170295c8 use long long rather then int for storing game logic properties.
There were also some problems with int to python conversion
- assigning a PyLong to a KX_GameObject from python would raise an error
- PyLong were coerced into floats when used with internal CValue arithmetic

Changes...
- PyLong is converted into CIntValue for coercing and assigning from python
- CValue's generic GetNumber() function returns a double rather then a float.
- Print an error when a PyType cant be coerced into a CValue

Tested with python, expressions and property sensor.
2009-04-12 06:41:01 +00:00
Andre Susano Pinto
2fff90bbb4 Added function name to many of the PyArg_ParseTuple calls in gameengine
This way python raises more useful messages.
2009-04-10 16:45:19 +00:00
Campbell Barton
5d64dd019e BGE Python API
Use each types dictionary to store attributes PyAttributeDef's so it uses pythons hash lookup (which it was already doing for methods) rather then doing a string lookup on the array each time.

This also means attributes can be found in the type without having to do a dir() on the instance.
2009-04-07 11:06:35 +00:00
Campbell Barton
6be6921184 moved more attributes from getattr into PyAttributeDef's 2009-04-04 02:57:35 +00:00
Campbell Barton
fd2b115678 Python BGE API
- Initialize python types with PyType_Ready, which adds methods to the type dictionary.
- use Pythons get/setattro (uses a python string for the attribute rather then char*). Using basic C strings seems nice but internally python converts them to python strings and discards them for most functions that accept char arrays.
- Method lookups use the PyTypes dictionary (should be faster then Py_FindMethod)
- Renamed __getattr -> py_base_getattro, _getattr -> py_getattro, __repr -> py_base_repr, py_delattro, py_getattro_self etc.

From here is possible to put all the parent classes methods into each python types dictionary to avoid nested lookups (api has 4 levels of lookups in some places), tested this but its not ready yet.

Simple tests for getting a method within a loop show this to be between 0.5 and 3.2x faster then using Py_FindMethod()
2009-04-03 14:51:06 +00:00
Campbell Barton
d573e9c539 BGE Python api
Added the method into the PyType so python knows about the methods (its supposed to work this way).
This means in the future the api can use PyType_Ready() to store the methods in the types dictionary.
Python3 removes Py_FindMethod and we should not be using it anyway since its not that efficient.
2009-04-03 04:12:20 +00:00
Campbell Barton
9d5c2af1d1 * removed typedefs that were not used (from anonymous enums and structs)
* Missed some cases of using a 'char *' as an attribute
* replace BGE's Py_Return macro with Pythons Py_RETURN_NONE
* other minor warnings removed
2009-02-21 12:43:24 +00:00
Campbell Barton
cdec2b3d15 BGE Python API
Use 'const char *' rather then the C++ 'STR_String' type for the attribute identifier of python attributes.

Each attribute and method access from python was allocating and freeing the string.
A simple test with getting an attribute a loop shows this speeds up attribute lookups a bit over 2x.
2009-02-19 13:42:07 +00:00
Benoit Bolsee
cc569504d0 BGE API Cleanup: update the python attribute definition framework.
* Value clamping to min/max is now supported as an option for integer, float 
  and string attribute (for string clamping=trim to max length)
* Post check function now take PyAttributeDef parameter so that more 
  generic function can be written.
* Definition of SCA_ILogicBrick::CheckProperty() function to check that
  a string attribute contains a valid property name of the parent game object.
* Definition of enum attribute vi KX_PYATTRIBUTE_ENUM... macros. 
  Enum are handled just like integer but to be totally paranoid, the sizeof()
  of the enum member is check at run time to match integer size.
* More bricks updated to use the framework.
2009-01-02 17:43:56 +00:00
Benoit Bolsee
1c663bbc7e First batch of GE API cleanup.
The principle is to replace most get/set methods of logic bricks by direct property access. 
To make porting of game code easier, the properties have usually the same type and use than
the return values/parameters of the get/set methods. 
More details on http://wiki.blender.org/index.php/GameEngineDev/Python_API_Clean_Up

Old methods are still available but will produce deprecation warnings on the console: 

"<method> is deprecated, use the <property> property instead"

You can avoid these messages by turning on the "Ignore deprecation warnings" option in Game menu.

PyDoc is updated to include the new properties and display a deprecation warning
for the get/set methods that are being deprecated.
2008-12-29 16:36:58 +00:00
Campbell Barton
3ec4f674d0 Python 2.4 should build with the game engine now, no thanks to python for switching from char to const char 2008-10-02 00:22:28 +00:00
Campbell Barton
f510057fef [#17600] char* -> const char*
Thanks to Sean Bartell (wtachi), was causing many many warnings which distracted from the real problems.
2008-09-20 11:08:35 +00:00
Benoit Bolsee
0fe906f49e BGE patch: simple fix to synchronize sensor pulse mode with sensor state transitions. 2008-09-02 18:34:54 +00:00
Benoit Bolsee
bc8f002a4c BGE state system improvement: the sensor with Level option enabled will trigger the controller of a newly activated state, even if the sensor is already connected to an active state; new isTriggered() python function to determine which sensor triggered the current controller.
Previously, this behaviour was available only for sensors
that were not connected to any active state, which was
forcing the game designer to duplicate sensors in some 
cases.
For example the Always sensors used to initialize the 
states needed to be duplicated for each state. With this
patch, a single Always sensor with Level option enabled
will suffice to initialize all the states. 
A Python controller can determine which sensor did trigger
with the new SCA_ISensor::isTriggered() function.

Notes:
- When a sensor with level option enabled is connected
  to multiple controllers, only those of newly activated
  states will be triggered. The controllers of already
  activated states will receive no trigger, unless the 
  sensor internal state toggled, in which case all the
  controllers are triggered as always.
- The old isPositive() function returns the internal
  state of the sensor, positive or negative; the new 
  isTriggered() function returns 1 only for sensors
  that generated an event in the current frame.
2008-08-23 11:54:27 +00:00
Benoit Bolsee
fda00bc034 BGE patch: New Delay sensor (derived from patch #17472)
Introduction of a new Delay sensor that can be used to 
generate positive and negative triggers at precise time,
expressed in number of frames. 
The delay parameter defines the length of the initial 
OFF period. A positive trigger is generated at the end
of this period. The duration parameter defines the 
length of the ON period following the OFF period.
A negative trigger is generated at the end of the ON period. 
If duration is 0, the sensor stays ON and there is no 
negative trigger. 
The sensor runs the OFF-ON cycle once unless the repeat 
option is set: the OFF-ON cycle repeats indefinately 
(or the OFF cycle if duration is 0).

The new generic SCA_ISensor::reset() Python function
can be used at any time to restart the sensor: the
current cycle is interrupted and no trigger is generated.
2008-08-16 20:45:37 +00:00
Benoit Bolsee
8a8a12ed84 BGE patch: logic optimization part 2: remove inactive sensors from logic manager.
With this patch, only sensors that are connected to 
active states are actually registered in the logic
manager. Inactive sensors won't take any CPU,
especially the Radar and Near sensors that use a
physical object for the detection: these objects
are removed from the physics engine.

To take advantage of this optimization patch, you
need to define very light idle state when the 
objects are inactive: make them transparent, suspend
the physics, keep few sensors active (e,g a message
sensor to wake up), etc.
2008-07-30 17:41:47 +00:00
Benoit Bolsee
5eb14d70b9 BGE patch: Add PyDoc for new logic bricks, set exception message on Py error, remove args on Py functions that don't take any to save CPU time 2008-07-23 21:37:37 +00:00
Benoit Bolsee
70d239ef7d BGE logic update: new servo control motion actuator, new distance constraint actuator, new orientation constraint actuator, new actuator sensor.
General
=======
- Removal of Damp option in motion actuator (replaced by
  Servo control motion).
- No PyDoc at present, will be added soon.

Generalization of the Lvl option
================================
A sensor with the Lvl option selected will always produce an 
event at the start of the game or when entering a state or at 
object creation. The event will be positive or negative 
depending of the sensor condition. A negative pulse makes
sense when used with a NAND controller: it will be converted
into an actuator activation.

Servo control motion
====================
A new variant of the motion actuator allows to control speed 
with force. The control if of type "PID" (Propotional, Integral, 
Derivate): the force is automatically adapted to achieve the 
target speed. All the parameters of the servo controller are
configurable. The result is a great variety of motion style: 
anysotropic friction, flying, sliding, pseudo Dloc...
This actuator should be used in preference to Dloc and LinV
as it produces more fluid movements and avoids the collision 
problem with Dloc.
LinV : target speed as (X,Y,Z) vector in local or world 
       coordinates (mostly useful in local coordinates).
Limit: the force can be limited along each axis (in the same
       coordinates of LinV). No limitation means that the force
       will grow as large as necessary to achieve the target 
       speed along that axis. Set a max value to limit the 
       accelaration along an axis (slow start) and set a min
       value (negative) to limit the brake force.
P:     Proportional coefficient of servo controller, don't set
       directly unless you know what you're doing.
I:     Integral coefficient of servo controller. Use low value
       (<0.1) for slow reaction (sliding), high values (>0.5)
       for hard control. The P coefficient will be automatically
       set to 60 times the I coefficient (a reasonable value).
D:     Derivate coefficient. Leave to 0 unless you know what
       you're doing. High values create instability. 

Notes: - This actuator works perfectly in zero friction 
         environment: the PID controller will simulate friction
         by applying force as needed.
       - This actuator is compatible with simple Drot motion
         actuator but not with LinV and Dloc motion.
       - (0,0,0) is a valid target speed.
       - All parameters are accessible through Python.

Distance constraint actuator
============================
A new variant of the constraint actuator allows to set the
distance and orientation relative to a surface. The controller
uses a ray to detect the surface (or any object) and adapt the
distance and orientation parallel to the surface.
Damp:  Time constant (in nb of frames) of distance and 
       orientation control.
Dist:  Select to enable distance control and set target 
       distance. The object will be position at the given
       distance of surface along the ray direction.
Direction: chose a local axis as the ray direction.
Range: length of ray. Objecgt within this distance will be 
       detected.
N    : Select to enable orientation control. The actuator will
       change the orientation and the location of the object 
       so that it is parallel to the surface at the vertical
       of the point of contact of the ray.  
M/P  : Select to enable material detection. Default is property
       detection.
Property/Material: name of property/material that the target of
       ray must have to be detected. If not set, property/
       material filter is disabled and any collisioning object
       within range will be detected.
PER  : Select to enable persistent operation. Normally the 
       actuator disables itself automatically if the ray does
       not reach a valid target. 
time : Maximum activation time of actuator. 
       0 : unlimited.
       >0: number of frames before automatic deactivation.  
rotDamp: Time constant (in nb of frame) of orientation control.
       0 : use Damp parameter.
       >0: use a different time constant for orientation.

Notes: - If neither N nor Dist options are set, the actuator
         does not change the position and orientation of the
         object; it works as a ray sensor.
       - The ray has no "X-ray" capability: if the first object
         hit does not have the required property/material, it
         returns no hit and the actuator disables itself unless
         PER option is enabled.
       - This actuator changes the position and orientation but
         not the speed of the object. This has an important 
         implication in a gravity environment: the gravity will
         cause the speed to increase although the object seems
         to stay still (it is repositioned at each frame).
         The gravity must be compensated in one way or another.
         the new servo control motion actuator is the simplest 
         way: set the target speed along the ray axis to 0
         and the servo control will automatically compensate 
         the gravity.
       - This actuator changes the orientation of the object 
         and will conflict with Drot motion unless it is 
         placed BEFORE the Drot motion actuator (the order of 
         actuator is important)
       - All parameters are accessible through Python.

Orientation constraint 
======================
A new variant of the constraint actuator allows to align an
object axis along a global direction.
Damp : Time constant (in nb of frames) of orientation control.
X,Y,Z: Global coordinates of reference direction. 
time : Maximum activation time of actuator. 
       0 : unlimited.
       >0: number of frames before automatic deactivation.  

Notes: - (X,Y,Z) = (0,0,0) is not a valid direction
       - This actuator changes the orientation of the object
         and will conflict with Drot motion unless it is placed
         BEFORE the Drot motion actuator (the order of 
         actuator is important).
       - This actuator doesn't change the location and speed. 
         It is compatible with gravity.
       - All parameters are accessible through Python.

Actuator sensor 
===============
This sensor detects the activation and deactivation of actuators 
of the same object. The sensor generates a positive pulse when 
the corresponding sensor is activated and a negative pulse when 
it is deactivated (the contrary if the Inv option is selected). 
This is mostly useful to chain actions and to detect the loss of 
contact of the distance motion actuator.

Notes: - Actuators are disabled at the start of the game; if you
         want to detect the On-Off transition of an actuator 
         after it has been activated at least once, unselect the
         Lvl and Inv options and use a NAND controller.
       - Some actuators deactivates themselves immediately after 
         being activated. The sensor detects this situation as 
         an On-Off transition.
       - The actuator name can be set through Python.
2008-07-04 08:14:50 +00:00
Campbell Barton
bd74679a39 small changes to py funcs that can run 100s of times a second, so python wont generate empty args tuple when they are not needed. 2008-07-04 00:30:44 +00:00
Benoit Bolsee
67c0b32375 BGE patch: Add level option on sensor and fix sensor reset.
Level option is now available on all sensors but is only implemented on 
mouse and keyboard sensors. The purpose of that option is to make
the sensor react on level rather than edge by default. It's only
applicable to state engine system when there is a state transition:
the sensor will generate a pulse if the condition is met from the
start of the state. Normally, the keyboard sensor generate a pulse
only when the key is pressed and not when the key is already pressed.
This patch allows to select this behavior.
The second part of the patch corrects the reset method for sensors
with inverted output.
2008-06-23 20:26:48 +00:00
Benoit Bolsee
5372def2b0 BGE patch: add state engine support in the logic bricks.
This patch introduces a simple state engine system with the logic bricks. This system features full
backward compatibility, multiple active states, multiple state transitions, automatic disabling of 
sensor and actuators, full GUI support and selective display of sensors and actuators. 
Note: Python API is available but not documented yet. It will be added asap.

State internals
===============
The state system is object based. The current state mask is stored in the object as a 32 bit value; 
each bit set in the mask is an active state. The controllers have a state mask too but only one bit
can be set: a controller belongs to a single state. The game engine will only execute controllers 
that belong to active states. Sensors and actuators don't have a state mask but are effectively 
attached to states via their links to the controllers. Sensors and actuators can be connected to more
than one state. When a controller becomes inactive because of a state change, its links to sensors 
and actuators are temporarily broken (until the state becomes active again). If an actuator gets isolated, 
i.e all the links to controllers are broken, it is automatically disabled. If a sensor gets isolated, 
the game engine will stop calling it to save CPU. It will also reset the sensor internal state so that
it can react as if the game just started when it gets reconnected to an active controller. For example,
an Always sensor in no pulse mode that is connected to a single state (i.e connected to one or more 
controllers of a single state) will generate a pulse each time the state becomes active. This feature is 
not available on all sensors, see the notes below.

GUI
===
This system system is fully configurable through the GUI: the object state mask is visible under the
object bar in the controller's colum as an array of buttons just like the 3D view layer mask.
Click on a state bit to only display the controllers of that state. You can select more than one state
with SHIFT-click. The All button sets all the bits so that you can see all the controllers of the object. 
The Ini button sets the state mask back to the object default state. You can change the default state 
of object by first selecting the desired state mask and storing using the menu under the State button. 
If you define a default state mask, it will be loaded into the object state make when you load the blend
file or when you run the game under the blenderplayer. However, when you run the game under Blender, 
the current selected state mask will be used as the startup state for the object. This allows you to test
specific state during the game design.

The controller display the state they belong to with a new button in the controller header. When you add
a new controller, it is added by default in the lowest enabled state. You can change the controller state 
by clicking on the button and selecting another state. If more than one state is enabled in the object
state mask, controllers are grouped by state for more readibility. 

The new Sta button in the sensor and actuator column header allows you to display only the sensors and 
actuators that are linked to visible controllers.

A new state actuator is available to modify the state during the game. It defines a bit mask and 
the operation to apply on the current object state mask:

Cpy: the bit mask is copied to the object state mask.
Add: the bits that set in the bit mask will be turned on in the object state mask.
Sub: the bits that set in the bit mask will be turned off in the object state mask.
Inv: the bits that set in the bit mask will be inverted in the objecyy state mask.

Notes
=====
- Although states have no name, a simply convention consists in using the name of the first controller 
  of the state as the state name. The GUI will support that convention by displaying as a hint the name
  of the first controller of the state when you move the mouse over a state bit of the object state mask
  or of the state actuator bit mask.
- Each object has a state mask and each object can have a state engine but if several objects are 
  part of a logical group, it is recommended to put the state engine only in the main object and to
  link the controllers of that object to the sensors and actuators of the different objects.
- When loading an old blend file, the state mask of all objects and controllers are initialized to 1 
  so that all the controllers belong to this single state. This ensures backward compatibility with 
  existing game.
- When the state actuator is activated at the same time as other actuators, these actuators are 
  guaranteed to execute before being eventually disabled due to the state change. This is useful for
  example to send a message or update a property at the time of changing the state.
- Sensors that depend on underlying resource won't reset fully when they are isolated. By the time they
  are acticated again, they will behave as follow:
  * keyboard sensor: keys already pressed won't be detected. The keyboard sensor is only sensitive 
    to new key press.
  * collision sensor: objects already colliding won't be detected. Only new collisions are 
    detected.
  * near and radar sensor: same as collision sensor.
2008-06-22 14:23:57 +00:00
Chris Want
5d0a207ecb Patch from GSR that a) fixes a whole bunch of GPL/BL license
blocks that were previously missed; and b) greatly increase my
ohloh stats!
2008-04-16 22:40:48 +00:00
Benoit Bolsee
88ce1c0638 Removed my own patch #8208: export SCA_ISensor::Evaluate() to Python. It was only useful for the ray sensor and the new rayCastTo() function provides better functionality 2008-04-06 19:14:04 +00:00
Benoit Bolsee
13aa413361 patch 8235 8218 8211 added: various gameengine improvements, fixed windows project files 2008-02-15 23:12:03 +00:00
Joshua Leung
33f3f85235 Reverting some other changes zaghaghi made 2008-02-05 21:09:38 +00:00
Kester Maddock
2fd6e72851 Changed Python _getattr/_setattr methods to use const STR_String& instead of char* - makes using these methods much nicer. 2004-05-16 13:05:15 +00:00
Nathan Letwory
00291b5cf4 [GameEngine] Commit all Kester's changes made to the gameengine to restore 2.25 like physics.
[SCons] Build with Solid as default when enabling the gameengine in the build process
[SCons] Build solid and qhull from the extern directory and link statically against them

That was about it.

There are a few things that needs double checking:

* Makefiles
* Projectfiles
* All the other systems than Linux and Windows on which the build (with scons) has been successfully tested.
2004-03-22 22:02:18 +00:00
Kent Mein
209a2ede2c Last of the config.h mods...
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

added to these files.

Kent
--
mein@cs.umn.edu
2002-11-25 15:29:57 +00:00
Hans Lambermont
12315f4d0e Initial revision 2002-10-12 11:37:38 +00:00