Problem/Bug:
------------
There were no way to have proper unicode characters (e.g. Japanese) in Blender Game Engine. Now we can :)
You can see a sample here: http://blog.mikepan.com/multi-language-support-in-blender/
Functionality Explanation:
--------------------------
This patch converts the Blender Font Objects to a new BGE type: KX_FontObject
This object inherits KX_GameObject.cpp and has the following properties:
- text (the text of the object)
- size (taken from the Blender object, usually is 1.0)
- resolution (1.0 by default, maybe not really needed, but at least for debugging/the time being it's nice to have)
The way we deal with linked objects is different than Blender. In Blender the text and size are a property of the Text databock. Therefore linked objects necessarily share the same text (and size, although the size of the object datablock affects that too). In BGE they are stored and accessed per object. Without that it would be problematic to have addObject adding texts that don't share the same data.
Known problems/limitations/ToDo:
--------------------------------
1) support for packed font and the <builtin>
2) figure why some fonts are displayed in a different size in 3DView/BGE (BLF)
3) investigate some glitches I see some times
4) support for multiline
5) support for more Blender Font Object options (text aligment, text boxes, ...)
[1] Diego (bdiego) evantually will help on that. For the time being we are using the "default" (ui) font to replace the <builtin>.
[2] but not all of them. I need to cross check who is calculating the size/dpi in/correctly - Blender or BLF. (e.g. fonts that work well - MS Gothic)
[3] I think this may be related to the resolution we are drawing the font
[4] It can't/will not be handled inside BFL. So the way I see it is to implement a mini text library/api that works as a middlelayer between the drawing step and BLF.
So instead of:
BLF_draw(fontid, (char *)text, strlen(text));
We would do:
MAGIC_ROUTINE_IM_NOT_BLF_draw(fontir, (char *)text, styleflag, width, height);
[5] don't hold your breath ... but if someone wants to have fun in the holidays the (4) and (5) are part of the same problem.
Code Explanation:
-----------------
The patch should be simple to read. They are three may parts:
1) BL_BlenderDataConversion.cpp:: converts the OB_FONT object into a KX_FontObject.cpp and store it in the KX_Scene->m_fonts
2) KetsjiEngine.cpp::RenderFonts:: loop through the texts and call their internal drawing routine.
3) KX_FontObject.cpp::
a) constructor: load the font of the object, and store other values.
b) DrawText: calculate the aspect for the given size (sounds hacky but this is how blf works) and call the render routine in RenderTools
4) KX_BlenderGL.cpp (called from rendertools) ::BL_print_game_line:: Draws the text. Using the BLF API
*) In order to handle visibility of the object added with AddObject I'm adding to the m_scene.m_fonts list only the Fonts in a visible layer - unlike Cameras and Lamps where all the objects are added.
Acknowledgements:
----------------
Thanks Benoit for the review and adjustment suggestions.
Thanks Diego for the BFL expertise, patches and support (Latin community ftw)
Thanks my boss for letting me do part of this patch during work time. Good thing we are starting a project in a partnership with a Japanese Foundation and eventual will need unicode in BGE :) for more details on that - www.nereusprogram.org - let's call it the main sponsor of this "bug feature" ;)
- ignore MSVC warnings when FREE_WINDOWS is defined to quiet warnings.
- the CMake flags were not being set correctly making blender have weirdo colors (no -funsigned-char).
Originally we had 2DFilters (m_filtermanager) stored in RenderTools. That way filters were stored globally and were being called once per each scene. This was producing two big problems: (1) performance and (2) flexibility of use.
(1) Performance - To run the filters 2X == 2X slower
(2) flexibility of use - Very often we want the filter in the scene but not in the UI for example.
For those reasons I believe that 2DFilters with multiple scenes was very useless or unpredictable. I hope they work fine now.
To make it work as before (2.4) you can simply recreate the 2dfilter actuators across the scenes.
* * * * *
Imagine that we have:
(a) Main Scene
(b) Overlay Scene
in Main Scene the Z Buffer and RGB will be from the main scene.
in Overlay Scene the Z Buffer will be from the Overlay Scene and the RBG buffer is from both [(a + 2D Filter) + b].
So in pseudo code if we have a,b,c,d,e scenes we have: (2DFilterE(2DFilterD(2DFilterC(2DFilterB(2DFilterA(a) + b) + c) + d) + e)
vector in perspective mode. This is default OpenGL behavior, but
by now this optimization is really insignificant. Works in both
the 3d view and game engine.
the features that are needed to run the game. Compile tested with
scons, make, but not cmake, that seems to have an issue not related
to these changes. The changes include:
* GLSL support in the viewport and game engine, enable in the game
menu in textured draw mode.
* Synced and merged part of the duplicated blender and gameengine/
gameplayer drawing code.
* Further refactoring of game engine drawing code, especially mesh
storage changed a lot.
* Optimizations in game engine armatures to avoid recomputations.
* A python function to get the framerate estimate in game.
* An option take object color into account in materials.
* An option to restrict shadow casters to a lamp's layers.
* Increase from 10 to 18 texture slots for materials, lamps, word.
An extra texture slot shows up once the last slot is used.
* Memory limit for undo, not enabled by default yet because it
needs the .B.blend to be changed.
* Multiple undo for image painting.
* An offset for dupligroups, so not all objects in a group have to
be at the origin.
rayCast(to,from,dist,prop,face,xray,poly):
The face paremeter determines the orientation of the normal:
0 or omitted => hit normal is always oriented towards the ray origin (as if you casted the ray from outside)
1 => hit normal is the real face normal (only for mesh object, otherwise face has no effect)
The ray has X-Ray capability if xray parameter is 1, otherwise the first object hit (other than self object) stops the ray.
The prop and xray parameters interact as follow:
prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray.
prop off, xray on : idem.
prop on, xray off: return closest hit if it matches prop, no hit otherwise.
prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray.
if poly is 0 or omitted, returns a 3-tuple with object reference, hit point and hit normal or (None,None,None) if no hit.
if poly is 1, returns a 4-tuple with in addition a KX_PolyProxy as 4th element.
The KX_PolyProxy object holds information on the polygon hit by the ray: the index of the vertex forming the poylgon, material, etc.
Attributes (read-only):
matname: The name of polygon material, empty if no material.
material: The material of the polygon
texture: The texture name of the polygon.
matid: The material index of the polygon, use this to retrieve vertex proxy from mesh proxy
v1: vertex index of the first vertex of the polygon, use this to retrieve vertex proxy from mesh proxy
v2: vertex index of the second vertex of the polygon, use this to retrieve vertex proxy from mesh proxy
v3: vertex index of the third vertex of the polygon, use this to retrieve vertex proxy from mesh proxy
v4: vertex index of the fourth vertex of the polygon, 0 if polygon has only 3 vertex
use this to retrieve vertex proxy from mesh proxy
visible: visible state of the polygon: 1=visible, 0=invisible
collide: collide state of the polygon: 1=receives collision, 0=collision free.
Methods:
getMaterialName(): Returns the polygon material name with MA prefix
getMaterial(): Returns the polygon material
getTextureName(): Returns the polygon texture name
getMaterialIndex(): Returns the material bucket index of the polygon.
getNumVertex(): Returns the number of vertex of the polygon.
isVisible(): Returns whether the polygon is visible or not
isCollider(): Returns whether the polygon is receives collision or not
getVertexIndex(vertex): Returns the mesh vertex index of a polygon vertex
getMesh(): Returns a mesh proxy
New methods of KX_MeshProxy have been implemented to retrieve KX_PolyProxy objects:
getNumPolygons(): Returns the number of polygon in the mesh.
getPolygon(index): Gets the specified polygon from the mesh.
More details in PyDoc.
I reviewed the code, suggested an update ( initialising accumulation buffer ), and tested the resulting update successfully.
It's great to see more GE developers!GE Patch by Hamed Zaghaghi to add motion blur to the GE ( using the accumulation buffer ).
I reviewed code and tested, gave some feedback ( initialising accumulation buffer ) which was implemented straight away, and re-reviewed.
It's great to have another GE coder on the team!
Depth sorting for Transparent polygons. Use ZTransp in Material buttons to enable.
This will cause an object's polygons to be sorted (back to front for alpha polygons, front to back for solid polygons.)
(adding)
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
also the Makefile.in's were from previous patch adding
the system depend stuff to configure.ac
Kent
--
mein@cs.umn.edu