Remove the last of the odd C++/python wrapper code from http://www.python.org/doc/PyCPP.html (~1998)
* Use python subclasses rather then having fake subclassing through get/set attributes calling parent types.
* PyObject getset arrays are created while initializing the types, converted from our own attribute arrays. This way python deals with subclasses and we dont have to define getattro or setattro functions for each type.
* GameObjects and Scenes no longer have attribute access to properties. only dictionary style access - ob['prop']
* remove each class's get/set/dir functions.
* remove isA() methods, can use PyObject_TypeCheck() in C and issubclass() in python.
* remove Parents[] array for each C++ class, was only used for isA() and wasnt correct in quite a few cases.
* remove PyTypeObject that was being passed as the last argument to each class (the parent classes too).
TODO -
* Light and VertexProxy need to be converted to using attributes.
* memory for getset arrays is never freed, not that bad since its will only allocates once.
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r19820:HEAD
Notes:
* Game and sequencer RNA, and sequencer header are now out of date
a bit after changes in trunk.
* I didn't know how to port these bugfixes, most likely they are
not needed anymore.
* Fix "duplicate strip" always increase the user count for ipo.
* IPO pinning on sequencer strips was lost during Undo.
A new type of "Sensor" physics object is available in the GE for advanced
collision management. It's called Sensor for its similarities with the
physics objects that underlie the Near and Radar sensors.
Like the Near and Radar object it is:
- static and ghost
- invisible by default
- always active to ensure correct collision detection
- capable of detecting both static and dynamic objects
- ignoring collision with their parent
- capable of broadphase filtering based on:
* Actor option: the collisioning object must have the Actor flag set to be detected
* property/material: as specified in the collision sensors attached to it
Broadphase filtering is important for performance reason: the collision points
will be computed only for the objects that pass the broahphase filter.
- automatically removed from the simulation when no collision sensor is active on it
Unlike the Near and Radar object it can:
- take any shape, including triangle mesh
- be made visible for debugging (just use the Visible actuator)
- have multiple collision sensors using it
Other than that, the sensor objects are ordinary objects. You can move them
freely or parent them. When parented to a dynamic object, they can provide
advanced collision control to this object.
The type of collision capability depends on the shape:
- box, sphere, cylinder, cone, convex hull provide volume detection.
- triangle mesh provides surface detection but you can give some volume
to the suface by increasing the margin in the Advanced Settings panel.
The margin applies on both sides of the surface.
Performance tip:
- Sensor objects perform better than Near and Radar: they do less synchronizations
because of the Scenegraph optimizations and they can have multiple collision sensors
on them (with different property filtering for example).
- Always prefer simple shape (box, sphere) to complex shape whenever possible.
- Always use broadphase filtering (avoid collision sensor with empty propery/material)
- Use collision sensor only when you need them. When no collision sensor is active
on the sensor object, it is removed from the simulation and consume no CPU.
Known limitations:
- When running Blender in debug mode, you will see one warning line of the console:
"warning btCollisionDispatcher::needsCollision: static-static collision!"
In release mode this message is not printed.
- Collision margin has no effect on sphere, cone and cylinder shape.
Other performance improvements:
- Remove unnecessary interpolation for Near and Radar objects and by extension
sensor objects.
- Use direct matrix copy instead of quaternion to synchronize orientation.
Other bug fix:
- Fix Near/Radar position error on newly activated objects. This was causing
several detection problems in YoFrankie
- Fix margin not passed correctly to gImpact shape.
- Disable force/velocity actions on static objects
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or
full scan. The logic engine is now free of memory allocation, which is
an important stability factor.
The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.
The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:
Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.
With the new system, the sequential execution of controllers is still
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.
If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.
Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
Separate getting a normal attribute and getting __dict__, was having to do too a check for __dict__ on each class (multiple times per getattro call from python) when its not used that often.
- Initialize python types with PyType_Ready, which adds methods to the type dictionary.
- use Pythons get/setattro (uses a python string for the attribute rather then char*). Using basic C strings seems nice but internally python converts them to python strings and discards them for most functions that accept char arrays.
- Method lookups use the PyTypes dictionary (should be faster then Py_FindMethod)
- Renamed __getattr -> py_base_getattro, _getattr -> py_getattro, __repr -> py_base_repr, py_delattro, py_getattro_self etc.
From here is possible to put all the parent classes methods into each python types dictionary to avoid nested lookups (api has 4 levels of lookups in some places), tested this but its not ready yet.
Simple tests for getting a method within a loop show this to be between 0.5 and 3.2x faster then using Py_FindMethod()
Removed a check in Python API touch.setProperty() for the property name on the sensor owner before allowing the name to be set - it makes no sense and isnt checked when creating the sensor.
- SCA_DelaySensor.py indent error making epydoc fail.
Previously only the first collision would trigger an event (no collisions a negative event ofcourse)
With the Pulse option enabled, any change to the set of colliding objects will trigger an event.
Added this because there was no way to count how many sheep were on a platform in YoFrankie without running a script periodically.
Changes in collision are detected by comparing the number of objects colliding with the last event, as well as a hash made from the object pointers.
Also changed the touch sensors internal list of colliding objects to only contain objects that match the property or material.
- pulse isnt a great name, could change this.
Use 'const char *' rather then the C++ 'STR_String' type for the attribute identifier of python attributes.
Each attribute and method access from python was allocating and freeing the string.
A simple test with getting an attribute a loop shows this speeds up attribute lookups a bit over 2x.
- Reset hit object pointer at end of frame of touch sensor to avoid returning invalid pointer to getHitObject().
- Clear all references in KX_TouchSensor::m_colliders when the sensor is disabled to avoid loose references.
- Test GetSGNode() systematically for all KX_GameObject functions that can be called from python in case a python controller keeps a reference in GameLogic (bad practice anyway).
With this patch, only sensors that are connected to
active states are actually registered in the logic
manager. Inactive sensors won't take any CPU,
especially the Radar and Near sensors that use a
physical object for the detection: these objects
are removed from the physics engine.
To take advantage of this optimization patch, you
need to define very light idle state when the
objects are inactive: make them transparent, suspend
the physics, keep few sensors active (e,g a message
sensor to wake up), etc.
This patch introduces a simple state engine system with the logic bricks. This system features full
backward compatibility, multiple active states, multiple state transitions, automatic disabling of
sensor and actuators, full GUI support and selective display of sensors and actuators.
Note: Python API is available but not documented yet. It will be added asap.
State internals
===============
The state system is object based. The current state mask is stored in the object as a 32 bit value;
each bit set in the mask is an active state. The controllers have a state mask too but only one bit
can be set: a controller belongs to a single state. The game engine will only execute controllers
that belong to active states. Sensors and actuators don't have a state mask but are effectively
attached to states via their links to the controllers. Sensors and actuators can be connected to more
than one state. When a controller becomes inactive because of a state change, its links to sensors
and actuators are temporarily broken (until the state becomes active again). If an actuator gets isolated,
i.e all the links to controllers are broken, it is automatically disabled. If a sensor gets isolated,
the game engine will stop calling it to save CPU. It will also reset the sensor internal state so that
it can react as if the game just started when it gets reconnected to an active controller. For example,
an Always sensor in no pulse mode that is connected to a single state (i.e connected to one or more
controllers of a single state) will generate a pulse each time the state becomes active. This feature is
not available on all sensors, see the notes below.
GUI
===
This system system is fully configurable through the GUI: the object state mask is visible under the
object bar in the controller's colum as an array of buttons just like the 3D view layer mask.
Click on a state bit to only display the controllers of that state. You can select more than one state
with SHIFT-click. The All button sets all the bits so that you can see all the controllers of the object.
The Ini button sets the state mask back to the object default state. You can change the default state
of object by first selecting the desired state mask and storing using the menu under the State button.
If you define a default state mask, it will be loaded into the object state make when you load the blend
file or when you run the game under the blenderplayer. However, when you run the game under Blender,
the current selected state mask will be used as the startup state for the object. This allows you to test
specific state during the game design.
The controller display the state they belong to with a new button in the controller header. When you add
a new controller, it is added by default in the lowest enabled state. You can change the controller state
by clicking on the button and selecting another state. If more than one state is enabled in the object
state mask, controllers are grouped by state for more readibility.
The new Sta button in the sensor and actuator column header allows you to display only the sensors and
actuators that are linked to visible controllers.
A new state actuator is available to modify the state during the game. It defines a bit mask and
the operation to apply on the current object state mask:
Cpy: the bit mask is copied to the object state mask.
Add: the bits that set in the bit mask will be turned on in the object state mask.
Sub: the bits that set in the bit mask will be turned off in the object state mask.
Inv: the bits that set in the bit mask will be inverted in the objecyy state mask.
Notes
=====
- Although states have no name, a simply convention consists in using the name of the first controller
of the state as the state name. The GUI will support that convention by displaying as a hint the name
of the first controller of the state when you move the mouse over a state bit of the object state mask
or of the state actuator bit mask.
- Each object has a state mask and each object can have a state engine but if several objects are
part of a logical group, it is recommended to put the state engine only in the main object and to
link the controllers of that object to the sensors and actuators of the different objects.
- When loading an old blend file, the state mask of all objects and controllers are initialized to 1
so that all the controllers belong to this single state. This ensures backward compatibility with
existing game.
- When the state actuator is activated at the same time as other actuators, these actuators are
guaranteed to execute before being eventually disabled due to the state change. This is useful for
example to send a message or update a property at the time of changing the state.
- Sensors that depend on underlying resource won't reset fully when they are isolated. By the time they
are acticated again, they will behave as follow:
* keyboard sensor: keys already pressed won't be detected. The keyboard sensor is only sensitive
to new key press.
* collision sensor: objects already colliding won't be detected. Only new collisions are
detected.
* near and radar sensor: same as collision sensor.
Consider:
gameobj->getClientInfo()->m_auxilary_info = (matname ? (void*)(matname+2) : NULL);
It works if matname is "MAblah", but not if matname is "".
2. Added constructor for struct RAS_CameraData.
3. Added initializers to the struct KX_ClientObjectInfo constructor
4. Collision sensors won't detect near sensors.
5. A stack of minor tweaks, adjusting whitespace, using ++it for stl stuff.
[SCons] Build with Solid as default when enabling the gameengine in the build process
[SCons] Build solid and qhull from the extern directory and link statically against them
That was about it.
There are a few things that needs double checking:
* Makefiles
* Projectfiles
* All the other systems than Linux and Windows on which the build (with scons) has been successfully tested.
(adding)
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
also the Makefile.in's were from previous patch adding
the system depend stuff to configure.ac
Kent
--
mein@cs.umn.edu