forked from bartvdbraak/blender
131de4352b
other places, was mainly due to instancing not working, but also found issues in procedural textures. The problem was with --use_fast_math, this seems to now have way lower precision for some operations. Disabled this flag and selectively use fast math functions. Did not find performance regression on GTX 460 after doing this.
211 lines
5.8 KiB
C
211 lines
5.8 KiB
C
/*
|
|
* Parts adapted from Open Shading Language with this license:
|
|
*
|
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
|
* All Rights Reserved.
|
|
*
|
|
* Modifications Copyright 2011, Blender Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Sony Pictures Imageworks nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __KERNEL_PROJECTION_CL__
|
|
#define __KERNEL_PROJECTION_CL__
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Spherical coordinates <-> Cartesian direction */
|
|
|
|
__device float2 direction_to_spherical(float3 dir)
|
|
{
|
|
float theta = acosf(dir.z);
|
|
float phi = atan2f(dir.x, dir.y);
|
|
|
|
return make_float2(theta, phi);
|
|
}
|
|
|
|
__device float3 spherical_to_direction(float theta, float phi)
|
|
{
|
|
return make_float3(
|
|
sinf(theta)*cosf(phi),
|
|
sinf(theta)*sinf(phi),
|
|
cosf(theta));
|
|
}
|
|
|
|
/* Equirectangular coordinates <-> Cartesian direction */
|
|
|
|
__device float2 direction_to_equirectangular(float3 dir)
|
|
{
|
|
float u = -atan2f(dir.y, dir.x)/(2.0f*M_PI_F) + 0.5f;
|
|
float v = atan2f(dir.z, hypotf(dir.x, dir.y))/M_PI_F + 0.5f;
|
|
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
__device float3 equirectangular_to_direction(float u, float v)
|
|
{
|
|
float phi = M_PI_F*(1.0f - 2.0f*u);
|
|
float theta = M_PI_F*(1.0f - v);
|
|
|
|
return make_float3(
|
|
sinf(theta)*cosf(phi),
|
|
sinf(theta)*sinf(phi),
|
|
cosf(theta));
|
|
}
|
|
|
|
/* Fisheye <-> Cartesian direction */
|
|
|
|
__device float2 direction_to_fisheye(float3 dir, float fov)
|
|
{
|
|
float r = atan2f(sqrtf(dir.y*dir.y + dir.z*dir.z), dir.x) / fov;
|
|
float phi = atan2f(dir.z, dir.y);
|
|
|
|
float u = r * cosf(phi) + 0.5f;
|
|
float v = r * sinf(phi) + 0.5f;
|
|
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
__device float3 fisheye_to_direction(float u, float v, float fov)
|
|
{
|
|
u = (u - 0.5f) * 2.0f;
|
|
v = (v - 0.5f) * 2.0f;
|
|
|
|
float r = sqrtf(u*u + v*v);
|
|
|
|
if(r > 1.0f)
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
float phi = acosf((r != 0.0f)? u/r: 0.0f);
|
|
float theta = asinf(r) * (fov / M_PI_F);
|
|
|
|
if(v < 0.0f) phi = -phi;
|
|
|
|
return make_float3(
|
|
cosf(theta),
|
|
-cosf(phi)*sinf(theta),
|
|
sinf(phi)*sinf(theta)
|
|
);
|
|
}
|
|
|
|
__device float2 direction_to_fisheye_equisolid(float3 dir, float lens, float width, float height)
|
|
{
|
|
float theta = acosf(dir.x);
|
|
float r = 2.0f * lens * sinf(theta * 0.5f);
|
|
float phi = atan2f(dir.z, dir.y);
|
|
|
|
float u = r * cosf(phi) / width + 0.5f;
|
|
float v = r * sinf(phi) / height + 0.5f;
|
|
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
__device float3 fisheye_equisolid_to_direction(float u, float v, float lens, float fov, float width, float height)
|
|
{
|
|
u = (u - 0.5f) * width;
|
|
v = (v - 0.5f) * height;
|
|
|
|
float rmax = 2.0f * lens * sinf(fov * 0.25f);
|
|
float r = sqrtf(u*u + v*v);
|
|
|
|
if(r > rmax)
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
float phi = acosf((r != 0.0f)? u/r: 0.0f);
|
|
float theta = 2.0f * asinf(r/(2.0f * lens));
|
|
|
|
if(v < 0.0f) phi = -phi;
|
|
|
|
return make_float3(
|
|
cosf(theta),
|
|
-cosf(phi)*sinf(theta),
|
|
sinf(phi)*sinf(theta)
|
|
);
|
|
}
|
|
|
|
/* Mirror Ball <-> Cartesion direction */
|
|
|
|
__device float3 mirrorball_to_direction(float u, float v)
|
|
{
|
|
/* point on sphere */
|
|
float3 dir;
|
|
|
|
dir.x = 2.0f*u - 1.0f;
|
|
dir.z = 2.0f*v - 1.0f;
|
|
dir.y = -sqrtf(max(1.0f - dir.x*dir.x - dir.z*dir.z, 0.0f));
|
|
|
|
/* reflection */
|
|
float3 I = make_float3(0.0f, -1.0f, 0.0f);
|
|
|
|
return 2.0f*dot(dir, I)*dir - I;
|
|
}
|
|
|
|
__device float2 direction_to_mirrorball(float3 dir)
|
|
{
|
|
/* inverse of mirrorball_to_direction */
|
|
dir.y -= 1.0f;
|
|
|
|
float div = 2.0f*sqrtf(max(-0.5f*dir.y, 0.0f));
|
|
if(div > 0.0f)
|
|
dir /= div;
|
|
|
|
float u = 0.5f*(dir.x + 1.0f);
|
|
float v = 0.5f*(dir.z + 1.0f);
|
|
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
__device float3 panorama_to_direction(KernelGlobals *kg, float u, float v)
|
|
{
|
|
switch(kernel_data.cam.panorama_type) {
|
|
case PANORAMA_EQUIRECTANGULAR:
|
|
return equirectangular_to_direction(u, v);
|
|
case PANORAMA_FISHEYE_EQUIDISTANT:
|
|
return fisheye_to_direction(u, v, kernel_data.cam.fisheye_fov);
|
|
case PANORAMA_FISHEYE_EQUISOLID:
|
|
default:
|
|
return fisheye_equisolid_to_direction(u, v, kernel_data.cam.fisheye_lens,
|
|
kernel_data.cam.fisheye_fov, kernel_data.cam.sensorwidth, kernel_data.cam.sensorheight);
|
|
}
|
|
}
|
|
|
|
__device float2 direction_to_panorama(KernelGlobals *kg, float3 dir)
|
|
{
|
|
switch(kernel_data.cam.panorama_type) {
|
|
case PANORAMA_EQUIRECTANGULAR:
|
|
return direction_to_equirectangular(dir);
|
|
case PANORAMA_FISHEYE_EQUIDISTANT:
|
|
return direction_to_fisheye(dir, kernel_data.cam.fisheye_fov);
|
|
case PANORAMA_FISHEYE_EQUISOLID:
|
|
default:
|
|
return direction_to_fisheye_equisolid(dir, kernel_data.cam.fisheye_lens,
|
|
kernel_data.cam.sensorwidth, kernel_data.cam.sensorheight);
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __KERNEL_PROJECTION_CL__ */
|
|
|