blender/intern/cycles/device/device_cpu.cpp
Sergey Sharybin 0579eaae1f Cycles: Make all #include statements relative to cycles source directory
The idea is to make include statements more explicit and obvious where the
file is coming from, additionally reducing chance of wrong header being
picked up.

For example, it was not obvious whether bvh.h was refferring to builder
or traversal, whenter node.h is a generic graph node or a shader node
and cases like that.

Surely this might look obvious for the active developers, but after some
time of not touching the code it becomes less obvious where file is coming
from.

This was briefly mentioned in T50824 and seems @brecht is fine with such
explicitness, but need to agree with all active developers before committing
this.

Please note that this patch is lacking changes related on GPU/OpenCL
support. This will be solved if/when we all agree this is a good idea to move
forward.

Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner

Reviewed By: lukasstockner97, maiself, nirved, dingto

Subscribers: brecht

Differential Revision: https://developer.blender.org/D2586
2017-03-29 13:41:11 +02:00

903 lines
23 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
/* So ImathMath is included before our kernel_cpu_compat. */
#ifdef WITH_OSL
/* So no context pollution happens from indirectly included windows.h */
# include "util/util_windows.h"
# include <OSL/oslexec.h>
#endif
#include "device/device.h"
#include "device/device_intern.h"
#include "device/device_split_kernel.h"
#include "kernel/kernel.h"
#include "kernel/kernel_compat_cpu.h"
#include "kernel/kernel_types.h"
#include "kernel/split/kernel_split_data.h"
#include "kernel/kernel_globals.h"
#include "kernel/osl/osl_shader.h"
#include "kernel/osl/osl_globals.h"
#include "render/buffers.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_function.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_opengl.h"
#include "util/util_progress.h"
#include "util/util_system.h"
#include "util/util_thread.h"
CCL_NAMESPACE_BEGIN
class CPUDevice;
class CPUSplitKernel : public DeviceSplitKernel {
CPUDevice *device;
public:
explicit CPUSplitKernel(CPUDevice *device);
virtual bool enqueue_split_kernel_data_init(const KernelDimensions& dim,
RenderTile& rtile,
int num_global_elements,
device_memory& kernel_globals,
device_memory& kernel_data_,
device_memory& split_data,
device_memory& ray_state,
device_memory& queue_index,
device_memory& use_queues_flag,
device_memory& work_pool_wgs);
virtual SplitKernelFunction* get_split_kernel_function(string kernel_name, const DeviceRequestedFeatures&);
virtual int2 split_kernel_local_size();
virtual int2 split_kernel_global_size(device_memory& kg, device_memory& data, DeviceTask *task);
virtual uint64_t state_buffer_size(device_memory& kg, device_memory& data, size_t num_threads);
};
class CPUDevice : public Device
{
static unordered_map<string, void*> kernel_functions;
static void register_kernel_function(const char* name, void* func)
{
kernel_functions[name] = func;
}
static const char* get_arch_name()
{
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
return "cpu_avx2";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
return "cpu_avx";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
return "cpu_sse41";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
return "cpu_sse3";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
return "cpu_sse2";
}
else
#endif
{
return "cpu";
}
}
template<typename F>
static F get_kernel_function(string name)
{
name = string("kernel_") + get_arch_name() + "_" + name;
unordered_map<string, void*>::iterator it = kernel_functions.find(name);
if(it == kernel_functions.end()) {
assert(!"kernel function not found");
return NULL;
}
return (F)it->second;
}
friend class CPUSplitKernel;
public:
TaskPool task_pool;
KernelGlobals kernel_globals;
#ifdef WITH_OSL
OSLGlobals osl_globals;
#endif
bool use_split_kernel;
DeviceRequestedFeatures requested_features;
CPUDevice(DeviceInfo& info, Stats &stats, bool background)
: Device(info, stats, background)
{
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
/* do now to avoid thread issues */
system_cpu_support_sse2();
system_cpu_support_sse3();
system_cpu_support_sse41();
system_cpu_support_avx();
system_cpu_support_avx2();
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
VLOG(1) << "Will be using AVX2 kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
VLOG(1) << "Will be using AVX kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
VLOG(1) << "Will be using SSE4.1 kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
VLOG(1) << "Will be using SSE3kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
VLOG(1) << "Will be using SSE2 kernels.";
}
else
#endif
{
VLOG(1) << "Will be using regular kernels.";
}
use_split_kernel = DebugFlags().cpu.split_kernel;
if(use_split_kernel) {
VLOG(1) << "Will be using split kernel.";
}
kernel_cpu_register_functions(register_kernel_function);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
kernel_cpu_sse2_register_functions(register_kernel_function);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
kernel_cpu_sse3_register_functions(register_kernel_function);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
kernel_cpu_sse41_register_functions(register_kernel_function);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
kernel_cpu_avx_register_functions(register_kernel_function);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
kernel_cpu_avx2_register_functions(register_kernel_function);
#endif
}
~CPUDevice()
{
task_pool.stop();
}
virtual bool show_samples() const
{
return (TaskScheduler::num_threads() == 1);
}
void mem_alloc(const char *name, device_memory& mem, MemoryType /*type*/)
{
if(name) {
VLOG(1) << "Buffer allocate: " << name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
}
mem.device_pointer = mem.data_pointer;
if(!mem.device_pointer) {
mem.device_pointer = (device_ptr)malloc(mem.memory_size());
}
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory& /*mem*/)
{
/* no-op */
}
void mem_copy_from(device_memory& /*mem*/,
int /*y*/, int /*w*/, int /*h*/,
int /*elem*/)
{
/* no-op */
}
void mem_zero(device_memory& mem)
{
memset((void*)mem.device_pointer, 0, mem.memory_size());
}
void mem_free(device_memory& mem)
{
if(mem.device_pointer) {
if(!mem.data_pointer) {
free((void*)mem.device_pointer);
}
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void const_copy_to(const char *name, void *host, size_t size)
{
kernel_const_copy(&kernel_globals, name, host, size);
}
void tex_alloc(const char *name,
device_memory& mem,
InterpolationType interpolation,
ExtensionType extension)
{
VLOG(1) << "Texture allocate: " << name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
kernel_tex_copy(&kernel_globals,
name,
mem.data_pointer,
mem.data_width,
mem.data_height,
mem.data_depth,
interpolation,
extension);
mem.device_pointer = mem.data_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void tex_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void *osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::PATH_TRACE) {
if(!use_split_kernel) {
thread_path_trace(*task);
}
else {
thread_path_trace_split(*task);
}
}
else if(task->type == DeviceTask::FILM_CONVERT)
thread_film_convert(*task);
else if(task->type == DeviceTask::SHADER)
thread_shader(*task);
}
class CPUDeviceTask : public DeviceTask {
public:
CPUDeviceTask(CPUDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&CPUDevice::thread_run, device, this);
}
};
void thread_path_trace(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
KernelGlobals kg = thread_kernel_globals_init();
RenderTile tile;
void(*path_trace_kernel)(KernelGlobals*, float*, unsigned int*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
path_trace_kernel = kernel_cpu_avx2_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
path_trace_kernel = kernel_cpu_avx_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
path_trace_kernel = kernel_cpu_sse41_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
path_trace_kernel = kernel_cpu_sse3_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
path_trace_kernel = kernel_cpu_sse2_path_trace;
}
else
#endif
{
path_trace_kernel = kernel_cpu_path_trace;
}
while(task.acquire_tile(this, tile)) {
float *render_buffer = (float*)tile.buffer;
uint *rng_state = (uint*)tile.rng_state;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
for(int sample = start_sample; sample < end_sample; sample++) {
if(task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
path_trace_kernel(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(&tile, tile.w*tile.h);
}
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
thread_kernel_globals_free(&kg);
}
void thread_path_trace_split(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
RenderTile tile;
CPUSplitKernel split_kernel(this);
/* allocate buffer for kernel globals */
device_memory kgbuffer;
kgbuffer.resize(sizeof(KernelGlobals));
mem_alloc("kernel_globals", kgbuffer, MEM_READ_WRITE);
KernelGlobals *kg = (KernelGlobals*)kgbuffer.device_pointer;
*kg = thread_kernel_globals_init();
requested_features.max_closure = MAX_CLOSURE;
if(!split_kernel.load_kernels(requested_features)) {
thread_kernel_globals_free((KernelGlobals*)kgbuffer.device_pointer);
mem_free(kgbuffer);
return;
}
while(task.acquire_tile(this, tile)) {
device_memory data;
split_kernel.path_trace(&task, tile, kgbuffer, data);
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
thread_kernel_globals_free((KernelGlobals*)kgbuffer.device_pointer);
mem_free(kgbuffer);
}
void thread_film_convert(DeviceTask& task)
{
float sample_scale = 1.0f/(task.sample + 1);
if(task.rgba_half) {
void(*convert_to_half_float_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
convert_to_half_float_kernel = kernel_cpu_avx2_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
convert_to_half_float_kernel = kernel_cpu_avx_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
convert_to_half_float_kernel = kernel_cpu_sse41_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
convert_to_half_float_kernel = kernel_cpu_sse3_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
convert_to_half_float_kernel = kernel_cpu_sse2_convert_to_half_float;
}
else
#endif
{
convert_to_half_float_kernel = kernel_cpu_convert_to_half_float;
}
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_half_float_kernel(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else {
void(*convert_to_byte_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
convert_to_byte_kernel = kernel_cpu_avx2_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
convert_to_byte_kernel = kernel_cpu_avx_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
convert_to_byte_kernel = kernel_cpu_sse41_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
convert_to_byte_kernel = kernel_cpu_sse3_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
convert_to_byte_kernel = kernel_cpu_sse2_convert_to_byte;
}
else
#endif
{
convert_to_byte_kernel = kernel_cpu_convert_to_byte;
}
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_byte_kernel(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
}
void thread_shader(DeviceTask& task)
{
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
void(*shader_kernel)(KernelGlobals*, uint4*, float4*, float*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
shader_kernel = kernel_cpu_avx2_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
shader_kernel = kernel_cpu_avx_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
shader_kernel = kernel_cpu_sse41_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
shader_kernel = kernel_cpu_sse3_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
shader_kernel = kernel_cpu_sse2_shader;
}
else
#endif
{
shader_kernel = kernel_cpu_shader;
}
for(int sample = 0; sample < task.num_samples; sample++) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++)
shader_kernel(&kg,
(uint4*)task.shader_input,
(float4*)task.shader_output,
(float*)task.shader_output_luma,
task.shader_eval_type,
task.shader_filter,
x,
task.offset,
sample);
if(task.get_cancel() || task_pool.canceled())
break;
task.update_progress(NULL);
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
int get_split_task_count(DeviceTask& task)
{
if(task.type == DeviceTask::SHADER)
return task.get_subtask_count(TaskScheduler::num_threads(), 256);
else
return task.get_subtask_count(TaskScheduler::num_threads());
}
void task_add(DeviceTask& task)
{
/* split task into smaller ones */
list<DeviceTask> tasks;
if(task.type == DeviceTask::SHADER)
task.split(tasks, TaskScheduler::num_threads(), 256);
else
task.split(tasks, TaskScheduler::num_threads());
foreach(DeviceTask& task, tasks)
task_pool.push(new CPUDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
protected:
inline KernelGlobals thread_kernel_globals_init()
{
KernelGlobals kg = kernel_globals;
kg.transparent_shadow_intersections = NULL;
const int decoupled_count = sizeof(kg.decoupled_volume_steps) /
sizeof(*kg.decoupled_volume_steps);
for(int i = 0; i < decoupled_count; ++i) {
kg.decoupled_volume_steps[i] = NULL;
}
kg.decoupled_volume_steps_index = 0;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
return kg;
}
inline void thread_kernel_globals_free(KernelGlobals *kg)
{
if(kg == NULL) {
return;
}
if(kg->transparent_shadow_intersections != NULL) {
free(kg->transparent_shadow_intersections);
}
const int decoupled_count = sizeof(kg->decoupled_volume_steps) /
sizeof(*kg->decoupled_volume_steps);
for(int i = 0; i < decoupled_count; ++i) {
if(kg->decoupled_volume_steps[i] != NULL) {
free(kg->decoupled_volume_steps[i]);
}
}
#ifdef WITH_OSL
OSLShader::thread_free(kg);
#endif
}
virtual bool load_kernels(DeviceRequestedFeatures& requested_features_) {
requested_features = requested_features_;
return true;
}
};
/* split kernel */
class CPUSplitKernelFunction : public SplitKernelFunction {
public:
CPUDevice* device;
void (*func)(KernelGlobals *kg, KernelData *data);
CPUSplitKernelFunction(CPUDevice* device) : device(device), func(NULL) {}
~CPUSplitKernelFunction() {}
virtual bool enqueue(const KernelDimensions& dim, device_memory& kernel_globals, device_memory& data)
{
if(!func) {
return false;
}
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
kg->global_size = make_int2(dim.global_size[0], dim.global_size[1]);
for(int y = 0; y < dim.global_size[1]; y++) {
for(int x = 0; x < dim.global_size[0]; x++) {
kg->global_id = make_int2(x, y);
func(kg, (KernelData*)data.device_pointer);
}
}
return true;
}
};
CPUSplitKernel::CPUSplitKernel(CPUDevice *device) : DeviceSplitKernel(device), device(device)
{
}
bool CPUSplitKernel::enqueue_split_kernel_data_init(const KernelDimensions& dim,
RenderTile& rtile,
int num_global_elements,
device_memory& kernel_globals,
device_memory& data,
device_memory& split_data,
device_memory& ray_state,
device_memory& queue_index,
device_memory& use_queues_flags,
device_memory& work_pool_wgs)
{
typedef void(*data_init_t)(KernelGlobals *kg,
ccl_constant KernelData *data,
ccl_global void *split_data_buffer,
int num_elements,
ccl_global char *ray_state,
ccl_global uint *rng_state,
int start_sample,
int end_sample,
int sx, int sy, int sw, int sh, int offset, int stride,
ccl_global int *Queue_index,
int queuesize,
ccl_global char *use_queues_flag,
ccl_global unsigned int *work_pool_wgs,
unsigned int num_samples,
ccl_global float *buffer);
data_init_t data_init;
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
data_init = kernel_cpu_avx2_data_init;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
data_init = kernel_cpu_avx_data_init;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
data_init = kernel_cpu_sse41_data_init;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
data_init = kernel_cpu_sse3_data_init;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
data_init = kernel_cpu_sse2_data_init;
}
else
#endif
{
data_init = kernel_cpu_data_init;
}
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
kg->global_size = make_int2(dim.global_size[0], dim.global_size[1]);
for(int y = 0; y < dim.global_size[1]; y++) {
for(int x = 0; x < dim.global_size[0]; x++) {
kg->global_id = make_int2(x, y);
data_init((KernelGlobals*)kernel_globals.device_pointer,
(KernelData*)data.device_pointer,
(void*)split_data.device_pointer,
num_global_elements,
(char*)ray_state.device_pointer,
(uint*)rtile.rng_state,
rtile.start_sample,
rtile.start_sample + rtile.num_samples,
rtile.x,
rtile.y,
rtile.w,
rtile.h,
rtile.offset,
rtile.stride,
(int*)queue_index.device_pointer,
dim.global_size[0] * dim.global_size[1],
(char*)use_queues_flags.device_pointer,
(uint*)work_pool_wgs.device_pointer,
rtile.num_samples,
(float*)rtile.buffer);
}
}
return true;
}
SplitKernelFunction* CPUSplitKernel::get_split_kernel_function(string kernel_name, const DeviceRequestedFeatures&)
{
CPUSplitKernelFunction *kernel = new CPUSplitKernelFunction(device);
kernel->func = device->get_kernel_function<void(*)(KernelGlobals*, KernelData*)>(kernel_name);
if(!kernel->func) {
delete kernel;
return NULL;
}
return kernel;
}
int2 CPUSplitKernel::split_kernel_local_size()
{
return make_int2(1, 1);
}
int2 CPUSplitKernel::split_kernel_global_size(device_memory& /*kg*/, device_memory& /*data*/, DeviceTask * /*task*/) {
return make_int2(64, 1);
}
uint64_t CPUSplitKernel::state_buffer_size(device_memory& kernel_globals, device_memory& /*data*/, size_t num_threads) {
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
return split_data_buffer_size(kg, num_threads);
}
unordered_map<string, void*> CPUDevice::kernel_functions;
Device *device_cpu_create(DeviceInfo& info, Stats &stats, bool background)
{
return new CPUDevice(info, stats, background);
}
void device_cpu_info(vector<DeviceInfo>& devices)
{
DeviceInfo info;
info.type = DEVICE_CPU;
info.description = system_cpu_brand_string();
info.id = "CPU";
info.num = 0;
info.advanced_shading = true;
info.pack_images = false;
devices.insert(devices.begin(), info);
}
string device_cpu_capabilities(void)
{
string capabilities = "";
capabilities += system_cpu_support_sse2() ? "SSE2 " : "";
capabilities += system_cpu_support_sse3() ? "SSE3 " : "";
capabilities += system_cpu_support_sse41() ? "SSE41 " : "";
capabilities += system_cpu_support_avx() ? "AVX " : "";
capabilities += system_cpu_support_avx2() ? "AVX2" : "";
if(capabilities[capabilities.size() - 1] == ' ')
capabilities.resize(capabilities.size() - 1);
return capabilities;
}
CCL_NAMESPACE_END