blender/source/gameengine/Rasterizer/RAS_OpenGLRasterizer/RAS_OpenGLRasterizer.cpp
2010-02-12 13:34:04 +00:00

1156 lines
26 KiB
C++

/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include "RAS_OpenGLRasterizer.h"
#include "GL/glew.h"
#include "RAS_Rect.h"
#include "RAS_TexVert.h"
#include "RAS_MeshObject.h"
#include "MT_CmMatrix4x4.h"
#include "RAS_IRenderTools.h" // rendering text
#include "GPU_draw.h"
#include "GPU_material.h"
#include "GPU_extensions.h"
#include "DNA_image_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_material_types.h"
#include "DNA_scene_types.h"
#include "BKE_DerivedMesh.h"
/**
* 32x32 bit masks for vinterlace stereo mode
*/
static GLuint left_eye_vinterlace_mask[32];
static GLuint right_eye_vinterlace_mask[32];
/**
* 32x32 bit masks for hinterlace stereo mode.
* Left eye = &hinterlace_mask[0]
* Right eye = &hinterlace_mask[1]
*/
static GLuint hinterlace_mask[33];
RAS_OpenGLRasterizer::RAS_OpenGLRasterizer(RAS_ICanvas* canvas)
:RAS_IRasterizer(canvas),
m_2DCanvas(canvas),
m_fogenabled(false),
m_time(0.0),
m_campos(0.0f, 0.0f, 0.0f),
m_camortho(false),
m_stereomode(RAS_STEREO_NOSTEREO),
m_curreye(RAS_STEREO_LEFTEYE),
m_eyeseparation(0.0),
m_focallength(0.0),
m_setfocallength(false),
m_noOfScanlines(32),
m_motionblur(0),
m_motionblurvalue(-1.0),
m_texco_num(0),
m_attrib_num(0),
//m_last_blendmode(GPU_BLEND_SOLID),
m_last_frontface(true),
m_materialCachingInfo(0)
{
m_viewmatrix.setIdentity();
m_viewinvmatrix.setIdentity();
for (int i = 0; i < 32; i++)
{
left_eye_vinterlace_mask[i] = 0x55555555;
right_eye_vinterlace_mask[i] = 0xAAAAAAAA;
hinterlace_mask[i] = (i&1)*0xFFFFFFFF;
}
hinterlace_mask[32] = 0;
}
RAS_OpenGLRasterizer::~RAS_OpenGLRasterizer()
{
}
bool RAS_OpenGLRasterizer::Init()
{
GPU_state_init();
m_ambr = 0.0f;
m_ambg = 0.0f;
m_ambb = 0.0f;
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
//m_last_blendmode = GPU_BLEND_SOLID;
GPU_set_material_blend_mode(GPU_BLEND_SOLID);
glFrontFace(GL_CCW);
m_last_frontface = true;
glClearColor(m_redback,m_greenback,m_blueback,m_alphaback);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
m_redback = 0.4375;
m_greenback = 0.4375;
m_blueback = 0.4375;
m_alphaback = 0.0;
glShadeModel(GL_SMOOTH);
return true;
}
void RAS_OpenGLRasterizer::SetAmbientColor(float red, float green, float blue)
{
m_ambr = red;
m_ambg = green;
m_ambb = blue;
}
void RAS_OpenGLRasterizer::SetAmbient(float factor)
{
float ambient[] = { m_ambr*factor, m_ambg*factor, m_ambb*factor, 1.0f };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);
}
void RAS_OpenGLRasterizer::SetBackColor(float red,
float green,
float blue,
float alpha)
{
m_redback = red;
m_greenback = green;
m_blueback = blue;
m_alphaback = alpha;
}
void RAS_OpenGLRasterizer::SetFogColor(float r,
float g,
float b)
{
m_fogr = r;
m_fogg = g;
m_fogb = b;
m_fogenabled = true;
}
void RAS_OpenGLRasterizer::SetFogStart(float start)
{
m_fogstart = start;
m_fogenabled = true;
}
void RAS_OpenGLRasterizer::SetFogEnd(float fogend)
{
m_fogdist = fogend;
m_fogenabled = true;
}
void RAS_OpenGLRasterizer::SetFog(float start,
float dist,
float r,
float g,
float b)
{
m_fogstart = start;
m_fogdist = dist;
m_fogr = r;
m_fogg = g;
m_fogb = b;
m_fogenabled = true;
}
void RAS_OpenGLRasterizer::DisableFog()
{
m_fogenabled = false;
}
bool RAS_OpenGLRasterizer::IsFogEnabled()
{
return m_fogenabled;
}
void RAS_OpenGLRasterizer::DisplayFog()
{
if ((m_drawingmode >= KX_SOLID) && m_fogenabled)
{
float params[5];
glFogi(GL_FOG_MODE, GL_LINEAR);
glFogf(GL_FOG_DENSITY, 0.1f);
glFogf(GL_FOG_START, m_fogstart);
glFogf(GL_FOG_END, m_fogstart + m_fogdist);
params[0]= m_fogr;
params[1]= m_fogg;
params[2]= m_fogb;
params[3]= 0.0;
glFogfv(GL_FOG_COLOR, params);
glEnable(GL_FOG);
}
else
{
glDisable(GL_FOG);
}
}
bool RAS_OpenGLRasterizer::SetMaterial(const RAS_IPolyMaterial& mat)
{
return mat.Activate(this, m_materialCachingInfo);
}
void RAS_OpenGLRasterizer::Exit()
{
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glClearDepth(1.0);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClearColor(m_redback, m_greenback, m_blueback, m_alphaback);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDepthMask (GL_TRUE);
glDepthFunc(GL_LEQUAL);
glBlendFunc(GL_ONE, GL_ZERO);
glDisable(GL_POLYGON_STIPPLE);
glDisable(GL_LIGHTING);
if (GLEW_EXT_separate_specular_color || GLEW_VERSION_1_2)
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);
EndFrame();
}
bool RAS_OpenGLRasterizer::BeginFrame(int drawingmode, double time)
{
m_time = time;
m_drawingmode = drawingmode;
// Blender camera routine destroys the settings
if (m_drawingmode < KX_SOLID)
{
glDisable (GL_CULL_FACE);
glDisable (GL_DEPTH_TEST);
}
else
{
glEnable(GL_DEPTH_TEST);
glEnable (GL_CULL_FACE);
}
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
//m_last_blendmode = GPU_BLEND_SOLID;
GPU_set_material_blend_mode(GPU_BLEND_SOLID);
glFrontFace(GL_CCW);
m_last_frontface = true;
glShadeModel(GL_SMOOTH);
m_2DCanvas->BeginFrame();
return true;
}
void RAS_OpenGLRasterizer::SetDrawingMode(int drawingmode)
{
m_drawingmode = drawingmode;
if(m_drawingmode == KX_WIREFRAME)
glDisable(GL_CULL_FACE);
}
int RAS_OpenGLRasterizer::GetDrawingMode()
{
return m_drawingmode;
}
void RAS_OpenGLRasterizer::SetDepthMask(DepthMask depthmask)
{
glDepthMask(depthmask == KX_DEPTHMASK_DISABLED ? GL_FALSE : GL_TRUE);
}
void RAS_OpenGLRasterizer::ClearColorBuffer()
{
m_2DCanvas->ClearColor(m_redback,m_greenback,m_blueback,m_alphaback);
m_2DCanvas->ClearBuffer(RAS_ICanvas::COLOR_BUFFER);
}
void RAS_OpenGLRasterizer::ClearDepthBuffer()
{
m_2DCanvas->ClearBuffer(RAS_ICanvas::DEPTH_BUFFER);
}
void RAS_OpenGLRasterizer::ClearCachingInfo(void)
{
m_materialCachingInfo = 0;
}
void RAS_OpenGLRasterizer::FlushDebugLines()
{
if(!m_debugLines.size())
return;
// DrawDebugLines
GLboolean light, tex;
light= glIsEnabled(GL_LIGHTING);
tex= glIsEnabled(GL_TEXTURE_2D);
if(light) glDisable(GL_LIGHTING);
if(tex) glDisable(GL_TEXTURE_2D);
glBegin(GL_LINES);
for (unsigned int i=0;i<m_debugLines.size();i++)
{
glColor4f(m_debugLines[i].m_color[0],m_debugLines[i].m_color[1],m_debugLines[i].m_color[2],1.f);
const MT_Scalar* fromPtr = &m_debugLines[i].m_from.x();
const MT_Scalar* toPtr= &m_debugLines[i].m_to.x();
glVertex3dv(fromPtr);
glVertex3dv(toPtr);
}
glEnd();
if(light) glEnable(GL_LIGHTING);
if(tex) glEnable(GL_TEXTURE_2D);
m_debugLines.clear();
}
void RAS_OpenGLRasterizer::EndFrame()
{
FlushDebugLines();
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
m_2DCanvas->EndFrame();
}
void RAS_OpenGLRasterizer::SetRenderArea()
{
RAS_Rect area;
// only above/below stereo method needs viewport adjustment
switch (m_stereomode)
{
case RAS_STEREO_ABOVEBELOW:
switch(m_curreye)
{
case RAS_STEREO_LEFTEYE:
// upper half of window
area.SetLeft(0);
area.SetBottom(m_2DCanvas->GetHeight() -
int(m_2DCanvas->GetHeight() - m_noOfScanlines) / 2);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight()));
m_2DCanvas->SetDisplayArea(&area);
break;
case RAS_STEREO_RIGHTEYE:
// lower half of window
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight() - m_noOfScanlines) / 2);
m_2DCanvas->SetDisplayArea(&area);
break;
}
break;
case RAS_STEREO_SIDEBYSIDE:
switch (m_curreye)
{
case RAS_STEREO_LEFTEYE:
// Left half of window
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(m_2DCanvas->GetWidth()/2);
area.SetTop(m_2DCanvas->GetHeight());
m_2DCanvas->SetDisplayArea(&area);
break;
case RAS_STEREO_RIGHTEYE:
// Right half of window
area.SetLeft(m_2DCanvas->GetWidth()/2);
area.SetBottom(0);
area.SetRight(m_2DCanvas->GetWidth());
area.SetTop(m_2DCanvas->GetHeight());
m_2DCanvas->SetDisplayArea(&area);
break;
}
break;
default:
// every available pixel
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight()));
m_2DCanvas->SetDisplayArea(&area);
break;
}
}
void RAS_OpenGLRasterizer::SetStereoMode(const StereoMode stereomode)
{
m_stereomode = stereomode;
}
RAS_IRasterizer::StereoMode RAS_OpenGLRasterizer::GetStereoMode()
{
return m_stereomode;
}
bool RAS_OpenGLRasterizer::Stereo()
{
if(m_stereomode > RAS_STEREO_NOSTEREO) // > 0
return true;
else
return false;
}
bool RAS_OpenGLRasterizer::InterlacedStereo()
{
return m_stereomode == RAS_STEREO_VINTERLACE || m_stereomode == RAS_STEREO_INTERLACED;
}
void RAS_OpenGLRasterizer::SetEye(const StereoEye eye)
{
m_curreye = eye;
switch (m_stereomode)
{
case RAS_STEREO_QUADBUFFERED:
glDrawBuffer(m_curreye == RAS_STEREO_LEFTEYE ? GL_BACK_LEFT : GL_BACK_RIGHT);
break;
case RAS_STEREO_ANAGLYPH:
if (m_curreye == RAS_STEREO_LEFTEYE)
{
glColorMask(GL_FALSE, GL_TRUE, GL_TRUE, GL_FALSE);
} else {
//glAccum(GL_LOAD, 1.0);
glColorMask(GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE);
ClearDepthBuffer();
}
break;
case RAS_STEREO_VINTERLACE:
{
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple((const GLubyte*) ((m_curreye == RAS_STEREO_LEFTEYE) ? left_eye_vinterlace_mask : right_eye_vinterlace_mask));
if (m_curreye == RAS_STEREO_RIGHTEYE)
ClearDepthBuffer();
break;
}
case RAS_STEREO_INTERLACED:
{
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple((const GLubyte*) &hinterlace_mask[m_curreye == RAS_STEREO_LEFTEYE?0:1]);
if (m_curreye == RAS_STEREO_RIGHTEYE)
ClearDepthBuffer();
break;
}
default:
break;
}
}
RAS_IRasterizer::StereoEye RAS_OpenGLRasterizer::GetEye()
{
return m_curreye;
}
void RAS_OpenGLRasterizer::SetEyeSeparation(const float eyeseparation)
{
m_eyeseparation = eyeseparation;
}
float RAS_OpenGLRasterizer::GetEyeSeparation()
{
return m_eyeseparation;
}
void RAS_OpenGLRasterizer::SetFocalLength(const float focallength)
{
m_focallength = focallength;
m_setfocallength = true;
}
float RAS_OpenGLRasterizer::GetFocalLength()
{
return m_focallength;
}
void RAS_OpenGLRasterizer::SwapBuffers()
{
m_2DCanvas->SwapBuffers();
}
const MT_Matrix4x4& RAS_OpenGLRasterizer::GetViewMatrix() const
{
return m_viewmatrix;
}
const MT_Matrix4x4& RAS_OpenGLRasterizer::GetViewInvMatrix() const
{
return m_viewinvmatrix;
}
void RAS_OpenGLRasterizer::IndexPrimitives_3DText(RAS_MeshSlot& ms,
class RAS_IPolyMaterial* polymat,
class RAS_IRenderTools* rendertools)
{
bool obcolor = ms.m_bObjectColor;
MT_Vector4& rgba = ms.m_RGBAcolor;
RAS_MeshSlot::iterator it;
// handle object color
if (obcolor) {
glDisableClientState(GL_COLOR_ARRAY);
glColor4d(rgba[0], rgba[1], rgba[2], rgba[3]);
}
else
glEnableClientState(GL_COLOR_ARRAY);
for(ms.begin(it); !ms.end(it); ms.next(it)) {
RAS_TexVert *vertex;
size_t i, j, numvert;
numvert = it.array->m_type;
if(it.array->m_type == RAS_DisplayArray::LINE) {
// line drawing, no text
glBegin(GL_LINES);
for(i=0; i<it.totindex; i+=2)
{
vertex = &it.vertex[it.index[i]];
glVertex3fv(vertex->getXYZ());
vertex = &it.vertex[it.index[i+1]];
glVertex3fv(vertex->getXYZ());
}
glEnd();
}
else {
// triangle and quad text drawing
for(i=0; i<it.totindex; i+=numvert)
{
float v[4][3];
int glattrib, unit;
for(j=0; j<numvert; j++) {
vertex = &it.vertex[it.index[i+j]];
v[j][0] = vertex->getXYZ()[0];
v[j][1] = vertex->getXYZ()[1];
v[j][2] = vertex->getXYZ()[2];
}
// find the right opengl attribute
glattrib = -1;
if(GLEW_ARB_vertex_program)
for(unit=0; unit<m_attrib_num; unit++)
if(m_attrib[unit] == RAS_TEXCO_UV1)
glattrib = unit;
rendertools->RenderText(polymat->GetDrawingMode(), polymat,
v[0], v[1], v[2], (numvert == 4)? v[3]: NULL, glattrib);
ClearCachingInfo();
}
}
}
glDisableClientState(GL_COLOR_ARRAY);
}
void RAS_OpenGLRasterizer::SetTexCoordNum(int num)
{
m_texco_num = num;
if(m_texco_num > RAS_MAX_TEXCO)
m_texco_num = RAS_MAX_TEXCO;
}
void RAS_OpenGLRasterizer::SetAttribNum(int num)
{
m_attrib_num = num;
if(m_attrib_num > RAS_MAX_ATTRIB)
m_attrib_num = RAS_MAX_ATTRIB;
}
void RAS_OpenGLRasterizer::SetTexCoord(TexCoGen coords, int unit)
{
// this changes from material to material
if(unit < RAS_MAX_TEXCO)
m_texco[unit] = coords;
}
void RAS_OpenGLRasterizer::SetAttrib(TexCoGen coords, int unit)
{
// this changes from material to material
if(unit < RAS_MAX_ATTRIB)
m_attrib[unit] = coords;
}
void RAS_OpenGLRasterizer::TexCoord(const RAS_TexVert &tv)
{
int unit;
if(GLEW_ARB_multitexture) {
for(unit=0; unit<m_texco_num; unit++) {
if(tv.getFlag() & RAS_TexVert::SECOND_UV && (int)tv.getUnit() == unit) {
glMultiTexCoord2fvARB(GL_TEXTURE0_ARB+unit, tv.getUV2());
continue;
}
switch(m_texco[unit]) {
case RAS_TEXCO_ORCO:
case RAS_TEXCO_GLOB:
glMultiTexCoord3fvARB(GL_TEXTURE0_ARB+unit, tv.getXYZ());
break;
case RAS_TEXCO_UV1:
glMultiTexCoord2fvARB(GL_TEXTURE0_ARB+unit, tv.getUV1());
break;
case RAS_TEXCO_NORM:
glMultiTexCoord3fvARB(GL_TEXTURE0_ARB+unit, tv.getNormal());
break;
case RAS_TEXTANGENT:
glMultiTexCoord4fvARB(GL_TEXTURE0_ARB+unit, tv.getTangent());
break;
case RAS_TEXCO_UV2:
glMultiTexCoord2fvARB(GL_TEXTURE0_ARB+unit, tv.getUV2());
break;
default:
break;
}
}
}
if(GLEW_ARB_vertex_program) {
for(unit=0; unit<m_attrib_num; unit++) {
switch(m_attrib[unit]) {
case RAS_TEXCO_ORCO:
case RAS_TEXCO_GLOB:
glVertexAttrib3fvARB(unit, tv.getXYZ());
break;
case RAS_TEXCO_UV1:
glVertexAttrib2fvARB(unit, tv.getUV1());
break;
case RAS_TEXCO_NORM:
glVertexAttrib3fvARB(unit, tv.getNormal());
break;
case RAS_TEXTANGENT:
glVertexAttrib4fvARB(unit, tv.getTangent());
break;
case RAS_TEXCO_UV2:
glVertexAttrib2fvARB(unit, tv.getUV2());
break;
case RAS_TEXCO_VCOL:
glVertexAttrib4ubvARB(unit, tv.getRGBA());
break;
default:
break;
}
}
}
}
void RAS_OpenGLRasterizer::IndexPrimitives(RAS_MeshSlot& ms)
{
IndexPrimitivesInternal(ms, false);
}
void RAS_OpenGLRasterizer::IndexPrimitivesMulti(RAS_MeshSlot& ms)
{
IndexPrimitivesInternal(ms, true);
}
static bool current_wireframe;
static RAS_MaterialBucket *current_bucket;
static RAS_IPolyMaterial *current_polymat;
static RAS_MeshSlot *current_ms;
static RAS_MeshObject *current_mesh;
static int current_blmat_nr;
static GPUVertexAttribs current_gpu_attribs;
static int CheckMaterialDM(int matnr, void *attribs)
{
// only draw the current material
if (matnr != current_blmat_nr)
return 0;
GPUVertexAttribs *gattribs = (GPUVertexAttribs *)attribs;
if (gattribs)
memcpy(gattribs, &current_gpu_attribs, sizeof(GPUVertexAttribs));
return 1;
}
static int CheckTexfaceDM(void *mcol, int index)
{
// index is the original face index, retrieve the polygon
RAS_Polygon* polygon = (index >= 0 && index < current_mesh->NumPolygons()) ?
current_mesh->GetPolygon(index) : NULL;
if (polygon && polygon->GetMaterial() == current_bucket) {
// must handle color.
if (current_wireframe)
return 2;
if (current_ms->m_bObjectColor) {
MT_Vector4& rgba = current_ms->m_RGBAcolor;
glColor4d(rgba[0], rgba[1], rgba[2], rgba[3]);
// don't use mcol
return 2;
}
if (!mcol) {
// we have to set the color from the material
unsigned char rgba[4];
current_polymat->GetMaterialRGBAColor(rgba);
glColor4ubv((const GLubyte *)rgba);
return 2;
}
return 1;
}
return 0;
}
void RAS_OpenGLRasterizer::IndexPrimitivesInternal(RAS_MeshSlot& ms, bool multi)
{
bool obcolor = ms.m_bObjectColor;
bool wireframe = m_drawingmode <= KX_WIREFRAME;
MT_Vector4& rgba = ms.m_RGBAcolor;
RAS_MeshSlot::iterator it;
if (ms.m_pDerivedMesh) {
// mesh data is in derived mesh,
current_bucket = ms.m_bucket;
current_polymat = current_bucket->GetPolyMaterial();
current_ms = &ms;
current_mesh = ms.m_mesh;
current_wireframe = wireframe;
MCol *mcol = (MCol*)ms.m_pDerivedMesh->getFaceDataArray(ms.m_pDerivedMesh, CD_MCOL);
if (current_polymat->GetFlag() & RAS_BLENDERGLSL) {
// GetMaterialIndex return the original mface material index,
// increment by 1 to match what derived mesh is doing
current_blmat_nr = current_polymat->GetMaterialIndex()+1;
// For GLSL we need to retrieve the GPU material attribute
Material* blmat = current_polymat->GetBlenderMaterial();
Scene* blscene = current_polymat->GetBlenderScene();
if (!wireframe && blscene && blmat)
GPU_material_vertex_attributes(GPU_material_from_blender(blscene, blmat), &current_gpu_attribs);
else
memset(&current_gpu_attribs, 0, sizeof(current_gpu_attribs));
// DM draw can mess up blending mode, restore at the end
int current_blend_mode = GPU_get_material_blend_mode();
ms.m_pDerivedMesh->drawFacesGLSL(ms.m_pDerivedMesh, CheckMaterialDM);
GPU_set_material_blend_mode(current_blend_mode);
} else {
ms.m_pDerivedMesh->drawMappedFacesTex(ms.m_pDerivedMesh, CheckTexfaceDM, mcol);
}
return;
}
// iterate over display arrays, each containing an index + vertex array
for(ms.begin(it); !ms.end(it); ms.next(it)) {
RAS_TexVert *vertex;
size_t i, j, numvert;
numvert = it.array->m_type;
if(it.array->m_type == RAS_DisplayArray::LINE) {
// line drawing
glBegin(GL_LINES);
for(i=0; i<it.totindex; i+=2)
{
vertex = &it.vertex[it.index[i]];
glVertex3fv(vertex->getXYZ());
vertex = &it.vertex[it.index[i+1]];
glVertex3fv(vertex->getXYZ());
}
glEnd();
}
else {
// triangle and quad drawing
if(it.array->m_type == RAS_DisplayArray::TRIANGLE)
glBegin(GL_TRIANGLES);
else
glBegin(GL_QUADS);
for(i=0; i<it.totindex; i+=numvert)
{
if(obcolor)
glColor4d(rgba[0], rgba[1], rgba[2], rgba[3]);
for(j=0; j<numvert; j++) {
vertex = &it.vertex[it.index[i+j]];
if(!wireframe) {
if(!obcolor)
glColor4ubv((const GLubyte *)(vertex->getRGBA()));
glNormal3fv(vertex->getNormal());
if(multi)
TexCoord(*vertex);
else
glTexCoord2fv(vertex->getUV1());
}
glVertex3fv(vertex->getXYZ());
}
}
glEnd();
}
}
}
void RAS_OpenGLRasterizer::SetProjectionMatrix(MT_CmMatrix4x4 &mat)
{
glMatrixMode(GL_PROJECTION);
double* matrix = &mat(0,0);
glLoadMatrixd(matrix);
m_camortho= (mat(3, 3) != 0.0f);
}
void RAS_OpenGLRasterizer::SetProjectionMatrix(const MT_Matrix4x4 & mat)
{
glMatrixMode(GL_PROJECTION);
double matrix[16];
/* Get into argument. Looks a bit dodgy, but it's ok. */
mat.getValue(matrix);
/* Internally, MT_Matrix4x4 uses doubles (MT_Scalar). */
glLoadMatrixd(matrix);
m_camortho= (mat[3][3] != 0.0f);
}
MT_Matrix4x4 RAS_OpenGLRasterizer::GetFrustumMatrix(
float left,
float right,
float bottom,
float top,
float frustnear,
float frustfar,
float focallength,
bool
){
MT_Matrix4x4 result;
double mat[16];
// correction for stereo
if(Stereo())
{
float near_div_focallength;
float offset;
// if Rasterizer.setFocalLength is not called we use the camera focallength
if (!m_setfocallength)
// if focallength is null we use a value known to be reasonable
m_focallength = (focallength == 0.f) ? m_eyeseparation * 30.0
: focallength;
near_div_focallength = frustnear / m_focallength;
offset = 0.5 * m_eyeseparation * near_div_focallength;
switch(m_curreye)
{
case RAS_STEREO_LEFTEYE:
left += offset;
right += offset;
break;
case RAS_STEREO_RIGHTEYE:
left -= offset;
right -= offset;
break;
}
// leave bottom and top untouched
}
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(left, right, bottom, top, frustnear, frustfar);
glGetDoublev(GL_PROJECTION_MATRIX, mat);
result.setValue(mat);
return result;
}
MT_Matrix4x4 RAS_OpenGLRasterizer::GetOrthoMatrix(
float left,
float right,
float bottom,
float top,
float frustnear,
float frustfar
){
MT_Matrix4x4 result;
double mat[16];
// stereo is meaning less for orthographic, disable it
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, frustnear, frustfar);
glGetDoublev(GL_PROJECTION_MATRIX, mat);
result.setValue(mat);
return result;
}
// next arguments probably contain redundant info, for later...
void RAS_OpenGLRasterizer::SetViewMatrix(const MT_Matrix4x4 &mat,
const MT_Matrix3x3 & camOrientMat3x3,
const MT_Point3 & pos,
bool perspective)
{
m_viewmatrix = mat;
// correction for stereo
if(Stereo() && perspective)
{
MT_Vector3 unitViewDir(0.0, -1.0, 0.0); // minus y direction, Blender convention
MT_Vector3 unitViewupVec(0.0, 0.0, 1.0);
MT_Vector3 viewDir, viewupVec;
MT_Vector3 eyeline;
// actual viewDir
viewDir = camOrientMat3x3 * unitViewDir; // this is the moto convention, vector on right hand side
// actual viewup vec
viewupVec = camOrientMat3x3 * unitViewupVec;
// vector between eyes
eyeline = viewDir.cross(viewupVec);
switch(m_curreye)
{
case RAS_STEREO_LEFTEYE:
{
// translate to left by half the eye distance
MT_Transform transform;
transform.setIdentity();
transform.translate(-(eyeline * m_eyeseparation / 2.0));
m_viewmatrix *= transform;
}
break;
case RAS_STEREO_RIGHTEYE:
{
// translate to right by half the eye distance
MT_Transform transform;
transform.setIdentity();
transform.translate(eyeline * m_eyeseparation / 2.0);
m_viewmatrix *= transform;
}
break;
}
}
m_viewinvmatrix = m_viewmatrix;
m_viewinvmatrix.invert();
// note: getValue gives back column major as needed by OpenGL
MT_Scalar glviewmat[16];
m_viewmatrix.getValue(glviewmat);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(glviewmat);
m_campos = pos;
}
const MT_Point3& RAS_OpenGLRasterizer::GetCameraPosition()
{
return m_campos;
}
bool RAS_OpenGLRasterizer::GetCameraOrtho()
{
return m_camortho;
}
void RAS_OpenGLRasterizer::SetCullFace(bool enable)
{
if (enable)
glEnable(GL_CULL_FACE);
else
glDisable(GL_CULL_FACE);
}
void RAS_OpenGLRasterizer::SetLines(bool enable)
{
if (enable)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
void RAS_OpenGLRasterizer::SetSpecularity(float specX,
float specY,
float specZ,
float specval)
{
GLfloat mat_specular[] = {specX, specY, specZ, specval};
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular);
}
void RAS_OpenGLRasterizer::SetShinyness(float shiny)
{
GLfloat mat_shininess[] = { shiny };
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess);
}
void RAS_OpenGLRasterizer::SetDiffuse(float difX,float difY,float difZ,float diffuse)
{
GLfloat mat_diffuse [] = {difX, difY,difZ, diffuse};
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, mat_diffuse);
}
void RAS_OpenGLRasterizer::SetEmissive(float eX, float eY, float eZ, float e)
{
GLfloat mat_emit [] = {eX,eY,eZ,e};
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, mat_emit);
}
double RAS_OpenGLRasterizer::GetTime()
{
return m_time;
}
void RAS_OpenGLRasterizer::SetPolygonOffset(float mult, float add)
{
glPolygonOffset(mult, add);
GLint mode = GL_POLYGON_OFFSET_FILL;
if (m_drawingmode < KX_SHADED)
mode = GL_POLYGON_OFFSET_LINE;
if (mult != 0.0f || add != 0.0f)
glEnable(mode);
else
glDisable(mode);
}
void RAS_OpenGLRasterizer::EnableMotionBlur(float motionblurvalue)
{
/* don't just set m_motionblur to 1, but check if it is 0 so
* we don't reset a motion blur that is already enabled */
if(m_motionblur == 0)
m_motionblur = 1;
m_motionblurvalue = motionblurvalue;
}
void RAS_OpenGLRasterizer::DisableMotionBlur()
{
m_motionblur = 0;
m_motionblurvalue = -1.0;
}
void RAS_OpenGLRasterizer::SetBlendingMode(int blendmode)
{
GPU_set_material_blend_mode(blendmode);
/*
if(blendmode == m_last_blendmode)
return;
if(blendmode == GPU_BLEND_SOLID) {
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else if(blendmode == GPU_BLEND_ADD) {
glBlendFunc(GL_ONE, GL_ONE);
glEnable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
}
else if(blendmode == GPU_BLEND_ALPHA) {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.0f);
}
else if(blendmode == GPU_BLEND_CLIP) {
glDisable(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.5f);
}
m_last_blendmode = blendmode;
*/
}
void RAS_OpenGLRasterizer::SetFrontFace(bool ccw)
{
if(m_last_frontface == ccw)
return;
if(ccw)
glFrontFace(GL_CCW);
else
glFrontFace(GL_CW);
m_last_frontface = ccw;
}