blender/intern/audaspace/Python/AUD_PyAPI.cpp

2935 lines
68 KiB
C++

/*
* $Id$
*
* ***** BEGIN LGPL LICENSE BLOCK *****
*
* Copyright 2009 Jörg Hermann Müller
*
* This file is part of AudaSpace.
*
* AudaSpace is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* AudaSpace is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with AudaSpace. If not, see <http://www.gnu.org/licenses/>.
*
* ***** END LGPL LICENSE BLOCK *****
*/
#include "AUD_PyAPI.h"
#include "structmember.h"
#include "AUD_NULLDevice.h"
#include "AUD_SourceCaps.h"
#include "AUD_DelayFactory.h"
#include "AUD_DoubleFactory.h"
#include "AUD_FaderFactory.h"
#include "AUD_HighpassFactory.h"
#include "AUD_LimiterFactory.h"
#include "AUD_LoopFactory.h"
#include "AUD_LowpassFactory.h"
#include "AUD_PingPongFactory.h"
#include "AUD_PitchFactory.h"
#include "AUD_ReverseFactory.h"
#include "AUD_SinusFactory.h"
#include "AUD_FileFactory.h"
#include "AUD_SquareFactory.h"
#include "AUD_StreamBufferFactory.h"
#include "AUD_SuperposeFactory.h"
#include "AUD_VolumeFactory.h"
#ifdef WITH_SDL
#include "AUD_SDLDevice.h"
#endif
#ifdef WITH_OPENAL
#include "AUD_OpenALDevice.h"
#endif
#ifdef WITH_JACK
#include "AUD_JackDevice.h"
#endif
#include <cstdlib>
#include <unistd.h>
// ====================================================================
#define PY_MODULE_ADD_CONSTANT(module, name) PyModule_AddIntConstant(module, #name, name)
// ====================================================================
static PyObject* AUDError;
// ====================================================================
static void
Sound_dealloc(Sound* self)
{
if(self->factory)
delete self->factory;
Py_XDECREF(self->child_list);
Py_TYPE(self)->tp_free((PyObject*)self);
}
static PyObject *
Sound_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
Sound *self;
self = (Sound*)type->tp_alloc(type, 0);
if(self != NULL)
{
static const char *kwlist[] = {"filename", NULL};
const char* filename = NULL;
if(!PyArg_ParseTupleAndKeywords(args, kwds, "|s", const_cast<char**>(kwlist), &filename))
{
Py_DECREF(self);
return NULL;
}
else if(filename == NULL)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Missing filename parameter!");
return NULL;
}
try
{
self->factory = new AUD_FileFactory(filename);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Filefactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
PyDoc_STRVAR(M_aud_Sound_sine_doc,
"sine(frequency)\n\n"
"Creates a sine sound wave.\n\n"
":arg frequency: The frequency of the sine wave in Hz.\n"
":type frequency: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_sine(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_file_doc,
"file(filename)\n\n"
"Creates a sound object of a sound file.\n\n"
":arg filename: Path of the file.\n"
":type filename: string\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_file(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_lowpass_doc,
"lowpass(sound, frequency)\n\n"
"Creates a low quality lowpass filter.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg frequency: The cut off trequency of the lowpass.\n"
":type frequency: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_lowpass(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_delay_doc,
"delay(sound, time)\n\n"
"Delays a sound by playing silence before the sound starts.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg time: How many seconds of silence should be added before the sound.\n"
":type time: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_delay(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_double_doc,
"double(first, second)\n\n"
"Plays two sounds in sequence.\n\n"
":arg first: The sound to play first.\n"
":type first: aud.Sound\n"
":arg second: The sound to play second.\n"
":type second: aud.Sound\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound\n\n"
".. note:: The two sounds have to have the same specifications "
"(channels and samplerate).");
static PyObject *
Sound_double(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_highpass_doc,
"highpass(sound, frequency)\n\n"
"Creates a low quality highpass filter.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg frequency: The cut off trequency of the highpass.\n"
":type frequency: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_highpass(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_limiter_doc,
"limit(sound, start, end)\n\n"
"Limits a sound within a specific start and end time.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg start: Start time in seconds.\n"
":type start: float\n"
":arg end: End time in seconds.\n"
":type end: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_limiter(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_pitch_doc,
"pitch(sound, factor)\n\n"
"Changes the pitch of a sound with a specific factor.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg factor: The factor to change the pitch with.\n"
":type factor: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound\n\n"
".. note:: This is done by changing the sample rate of the "
"underlying sound, which has to be an integer, so the factor "
"value rounded and the factor may not be 100 % accurate.");
static PyObject *
Sound_pitch(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_volume_doc,
"volume(sound, volume)\n\n"
"Changes the volume of a sound.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg volume: The new volume..\n"
":type volume: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound\n\n"
".. note:: Should be in the range [0, 1] to avoid clipping.");
static PyObject *
Sound_volume(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_fadein_doc,
"fadein(sound, start, length)\n\n"
"Fades a sound in.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg start: Time in seconds when the fading should start.\n"
":type filename: float\n"
":arg length: Time in seconds how long the fading should last.\n"
":type filename: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_fadein(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_fadeout_doc,
"fadeout(sound, start, length)\n\n"
"Fades a sound out.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg start: Time in seconds when the fading should start.\n"
":type filename: float\n"
":arg length: Time in seconds how long the fading should last.\n"
":type filename: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_fadeout(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_loop_doc,
"loop(sound, count)\n\n"
"Loops a sound.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg count: How often the sound should be looped. "
"Negative values mean endlessly.\n"
":type count: integer\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_loop(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_superpose_doc,
"superpose(sound1, sound2)\n\n"
"Mixes two sounds.\n\n"
":arg sound1: The sound to filter.\n"
":type sound1: aud.Sound\n"
":arg sound2: The sound to filter.\n"
":type sound2: aud.Sound\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_superpose(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_pingpong_doc,
"pingpong(sound)\n\n"
"Plays a sound forward and then backward.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound\n\n"
".. note:: The sound has to be buffered to be played reverse.");
static PyObject *
Sound_pingpong(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_reverse_doc,
"reverse(sound)\n\n"
"Plays a sound reversed.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound\n\n"
".. note:: The sound has to be buffered to be played reverse.");
static PyObject *
Sound_reverse(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_buffer_doc,
"buffer(sound)\n\n"
"Buffers a sound into RAM.\n\n"
":arg sound: The sound to buffer.\n"
":type sound: aud.Sound\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound\n\n"
".. note:: Raw PCM data needs a lot of space, only buffer short sounds.");
static PyObject *
Sound_buffer(PyObject* nothing, PyObject* args);
PyDoc_STRVAR(M_aud_Sound_square_doc,
"squre(sound, threshold)\n\n"
"Makes a square wave out of an audio wave.\n\n"
":arg sound: The sound to filter.\n"
":type sound: aud.Sound\n"
":arg threshold: Threshold value over which an amplitude counts non-zero.\n"
":type threshold: float\n"
":return: The created aud.Sound object.\n"
":rtype: aud.Sound");
static PyObject *
Sound_square(PyObject* nothing, PyObject* args);
static PyMethodDef Sound_methods[] = {
{"sine", (PyCFunction)Sound_sine, METH_VARARGS | METH_STATIC,
M_aud_Sound_sine_doc
},
{"file", (PyCFunction)Sound_file, METH_VARARGS | METH_STATIC,
M_aud_Sound_file_doc
},
{"lowpass", (PyCFunction)Sound_lowpass, METH_VARARGS | METH_STATIC,
M_aud_Sound_lowpass_doc
},
{"delay", (PyCFunction)Sound_delay, METH_VARARGS | METH_STATIC,
M_aud_Sound_delay_doc
},
{"double", (PyCFunction)Sound_double, METH_VARARGS | METH_STATIC,
M_aud_Sound_double_doc
},
{"highpass", (PyCFunction)Sound_highpass, METH_VARARGS | METH_STATIC,
M_aud_Sound_highpass_doc
},
{"limiter", (PyCFunction)Sound_limiter, METH_VARARGS | METH_STATIC,
M_aud_Sound_limiter_doc
},
{"pitch", (PyCFunction)Sound_pitch, METH_VARARGS | METH_STATIC,
M_aud_Sound_pitch_doc
},
{"volume", (PyCFunction)Sound_volume, METH_VARARGS | METH_STATIC,
M_aud_Sound_volume_doc
},
{"fadein", (PyCFunction)Sound_fadein, METH_VARARGS | METH_STATIC,
M_aud_Sound_fadein_doc
},
{"fadeout", (PyCFunction)Sound_fadeout, METH_VARARGS | METH_STATIC,
M_aud_Sound_fadeout_doc
},
{"loop", (PyCFunction)Sound_loop, METH_VARARGS | METH_STATIC,
M_aud_Sound_loop_doc
},
{"superpose", (PyCFunction)Sound_superpose, METH_VARARGS | METH_STATIC,
M_aud_Sound_superpose_doc
},
{"pingpong", (PyCFunction)Sound_pingpong, METH_O | METH_STATIC,
M_aud_Sound_pingpong_doc
},
{"reverse", (PyCFunction)Sound_reverse, METH_O | METH_STATIC,
M_aud_Sound_reverse_doc
},
{"buffer", (PyCFunction)Sound_buffer, METH_O | METH_STATIC,
M_aud_Sound_buffer_doc
},
{"square", (PyCFunction)Sound_square, METH_VARARGS | METH_STATIC,
M_aud_Sound_square_doc
},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(M_aud_Sound_doc,
"Sound objects are immutable and represent a sound that can be "
"played simultaneously multiple times.");
static PyTypeObject SoundType = {
PyVarObject_HEAD_INIT(NULL, 0)
"aud.Sound", /* tp_name */
sizeof(Sound), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)Sound_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
M_aud_Sound_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Sound_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
Sound_new, /* tp_new */
};
static PyObject *
Sound_sine(PyObject* nothing, PyObject* args)
{
double frequency;
if(!PyArg_ParseTuple(args, "d", &frequency))
return NULL;
Sound *self;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
try
{
self->factory = new AUD_SinusFactory(frequency, (AUD_SampleRate)44100);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Sinusfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_file(PyObject* nothing, PyObject* args)
{
const char* filename = NULL;
if(!PyArg_ParseTuple(args, "s", &filename))
return NULL;
Sound *self;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
try
{
self->factory = new AUD_FileFactory(filename);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Filefactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_lowpass(PyObject* nothing, PyObject* args)
{
float frequency;
PyObject* object;
if(!PyArg_ParseTuple(args, "Of", &object, &frequency))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_LowpassFactory(child->factory, frequency, 0.9);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Lowpassfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_delay(PyObject* nothing, PyObject* args)
{
float delay;
PyObject* object;
if(!PyArg_ParseTuple(args, "Of", &object, &delay))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_DelayFactory(child->factory, delay);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Delayfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_double(PyObject* nothing, PyObject* args)
{
PyObject* object1;
PyObject* object2;
if(!PyArg_ParseTuple(args, "OO", &object1, &object2))
return NULL;
if(!PyObject_TypeCheck(object1, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "First object is not of type aud.Sound!");
return NULL;
}
if(!PyObject_TypeCheck(object2, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Second object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child1 = (Sound*)object1;
Sound *child2 = (Sound*)object2;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
self->child_list = Py_BuildValue("(OO)", object1, object2);
try
{
self->factory = new AUD_DoubleFactory(child1->factory, child2->factory);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Doublefactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_highpass(PyObject* nothing, PyObject* args)
{
float frequency;
PyObject* object;
if(!PyArg_ParseTuple(args, "Of", &object, &frequency))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_HighpassFactory(child->factory, frequency, 0.9);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Highpassfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_limiter(PyObject* nothing, PyObject* args)
{
float start, end;
PyObject* object;
if(!PyArg_ParseTuple(args, "Off", &object, &start, &end))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_LimiterFactory(child->factory, start, end);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Limiterfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_pitch(PyObject* nothing, PyObject* args)
{
float factor;
PyObject* object;
if(!PyArg_ParseTuple(args, "Of", &object, &factor))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_PitchFactory(child->factory, factor);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Pitchfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_volume(PyObject* nothing, PyObject* args)
{
float volume;
PyObject* object;
if(!PyArg_ParseTuple(args, "Of", &object, &volume))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_VolumeFactory(child->factory, volume);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Volumefactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_fadein(PyObject* nothing, PyObject* args)
{
float start, length;
PyObject* object;
if(!PyArg_ParseTuple(args, "Off", &object, &start, &length))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_FaderFactory(child->factory, AUD_FADE_IN, start, length);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Faderfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_fadeout(PyObject* nothing, PyObject* args)
{
float start, length;
PyObject* object;
if(!PyArg_ParseTuple(args, "Off", &object, &start, &length))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_FaderFactory(child->factory, AUD_FADE_OUT, start, length);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Faderfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_loop(PyObject* nothing, PyObject* args)
{
int loop;
PyObject* object;
if(!PyArg_ParseTuple(args, "Oi", &object, &loop))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_LoopFactory(child->factory, loop);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Loopfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_superpose(PyObject* nothing, PyObject* args)
{
PyObject* object1;
PyObject* object2;
if(!PyArg_ParseTuple(args, "OO", &object1, &object2))
return NULL;
if(!PyObject_TypeCheck(object1, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "First object is not of type aud.Sound!");
return NULL;
}
if(!PyObject_TypeCheck(object2, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Second object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child1 = (Sound*)object1;
Sound *child2 = (Sound*)object2;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
self->child_list = Py_BuildValue("(OO)", object1, object2);
try
{
self->factory = new AUD_SuperposeFactory(child1->factory, child2->factory);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Superposefactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_pingpong(PyObject* nothing, PyObject* object)
{
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_PingPongFactory(child->factory);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Pingpongfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_reverse(PyObject* nothing, PyObject* object)
{
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_ReverseFactory(child->factory);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Reversefactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_buffer(PyObject* nothing, PyObject* object)
{
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
try
{
self->factory = new AUD_StreamBufferFactory(child->factory);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Bufferfactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
static PyObject *
Sound_square(PyObject* nothing, PyObject* args)
{
float threshold;
PyObject* object;
if(!PyArg_ParseTuple(args, "Of", &object, &threshold))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
Sound *self;
Sound *child = (Sound*)object;
self = (Sound*)SoundType.tp_alloc(&SoundType, 0);
if(self != NULL)
{
Py_INCREF(object);
self->child_list = object;
try
{
self->factory = new AUD_SquareFactory(child->factory, threshold);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Squarefactory couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
// ========== Handle ==================================================
static void
Handle_dealloc(Handle* self)
{
Py_XDECREF(self->device);
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyDoc_STRVAR(M_aud_Handle_pause_doc,
"pause()\n\n"
"Pauses playback.\n\n"
":return: Whether the action succeeded.\n"
":rtype: boolean");
static PyObject *
Handle_pause(Handle *self)
{
Device* device = (Device*)self->device;
try
{
if(device->device->pause(self->handle))
{
Py_RETURN_TRUE;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't pause the sound!");
return NULL;
}
Py_RETURN_FALSE;
}
PyDoc_STRVAR(M_aud_Handle_resume_doc,
"resume()\n\n"
"Resumes playback.\n\n"
":return: Whether the action succeeded.\n"
":rtype: boolean");
static PyObject *
Handle_resume(Handle *self)
{
Device* device = (Device*)self->device;
try
{
if(device->device->resume(self->handle))
{
Py_RETURN_TRUE;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't resume the sound!");
return NULL;
}
Py_RETURN_FALSE;
}
PyDoc_STRVAR(M_aud_Handle_stop_doc,
"stop()\n\n"
"Stops playback.\n\n"
":return: Whether the action succeeded.\n"
":rtype: boolean");
static PyObject *
Handle_stop(Handle *self)
{
Device* device = (Device*)self->device;
try
{
if(device->device->stop(self->handle))
{
Py_RETURN_TRUE;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't stop the sound!");
return NULL;
}
Py_RETURN_FALSE;
}
PyDoc_STRVAR(M_aud_Handle_update_doc,
"update(info)\n\n"
"Updates the 3D information of the source.\n\n"
":arg info: The 3D info in the format (fff)(fff)((fff)(fff)(fff))."
" Position, velocity and a 3x3 orientation matrix.\n"
":type info: float tuple\n"
":return: Whether the action succeeded.\n"
":rtype: boolean");
static PyObject *
Handle_update(Handle *self, PyObject *args)
{
AUD_3DData data;
if(!PyArg_Parse(args, "(fff)(fff)((fff)(fff)(fff))",
&data.position[0], &data.position[1], &data.position[2],
&data.velocity[0], &data.velocity[1], &data.velocity[2],
&data.orientation[0], &data.orientation[1], &data.orientation[2],
&data.orientation[3], &data.orientation[4], &data.orientation[5],
&data.orientation[6], &data.orientation[7], &data.orientation[8]))
return NULL;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
if(device->updateSource(self->handle, data))
Py_RETURN_TRUE;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't update the source!");
return NULL;
}
Py_RETURN_FALSE;
}
static PyMethodDef Handle_methods[] = {
{"pause", (PyCFunction)Handle_pause, METH_NOARGS,
M_aud_Handle_pause_doc
},
{"resume", (PyCFunction)Handle_resume, METH_NOARGS,
M_aud_Handle_resume_doc
},
{"stop", (PyCFunction)Handle_stop, METH_NOARGS,
M_aud_Handle_stop_doc
},
{"update", (PyCFunction)Handle_update, METH_O,
M_aud_Handle_update_doc
},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(M_aud_Handle_position_doc,
"The playback position of the sound.");
static PyObject *
Handle_get_position(Handle *self, void* nothing)
{
Device* device = (Device*)self->device;
try
{
return Py_BuildValue("f", device->device->getPosition(self->handle));
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the position of the sound!");
return NULL;
}
}
static int
Handle_set_position(Handle *self, PyObject* args, void* nothing)
{
float position;
if(!PyArg_Parse(args, "f", &position))
return -1;
Device* device = (Device*)self->device;
try
{
if(device->device->seek(self->handle, position))
{
return 0;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't seek the sound!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_keep_doc,
"Whether the sound should be kept paused in the device when its end is reached.");
static int
Handle_set_keep(Handle *self, PyObject* args, void* nothing)
{
if(!PyBool_Check(args))
{
PyErr_SetString(PyExc_TypeError, "keep is not a boolean!");
return -1;
}
bool keep = args == Py_True;
Device* device = (Device*)self->device;
try
{
if(device->device->setKeep(self->handle, keep))
{
return 0;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set keep of the sound!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_status_doc,
"Whether the sound is playing, paused or stopped.");
static PyObject *
Handle_get_status(Handle *self, void* nothing)
{
Device* device = (Device*)self->device;
try
{
return Py_BuildValue("i", device->device->getStatus(self->handle));
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the status of the sound!");
return NULL;
}
}
PyDoc_STRVAR(M_aud_Handle_volume_doc,
"The volume of the sound.");
static PyObject *
Handle_get_volume(Handle *self, void* nothing)
{
Device* device = (Device*)self->device;
try
{
AUD_SourceCaps caps;
caps.handle = self->handle;
caps.value = 1.0f;
if(device->device->getCapability(AUD_CAPS_SOURCE_VOLUME, &caps))
{
return Py_BuildValue("f", caps.value);
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't get the sound volume!");
return NULL;
}
Py_RETURN_NAN;
}
static int
Handle_set_volume(Handle *self, PyObject* args, void* nothing)
{
float volume;
if(!PyArg_Parse(args, "f", &volume))
return -1;
Device* device = (Device*)self->device;
try
{
AUD_SourceCaps caps;
caps.handle = self->handle;
caps.value = volume;
if(device->device->setCapability(AUD_CAPS_SOURCE_VOLUME, &caps))
{
return 0;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the sound volume!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_pitch_doc,
"The pitch of the sound.");
static int
Handle_set_pitch(Handle *self, PyObject* args, void* nothing)
{
float pitch;
if(!PyArg_Parse(args, "f", &pitch))
return -1;
Device* device = (Device*)self->device;
try
{
AUD_SourceCaps caps;
caps.handle = self->handle;
caps.value = pitch;
if(device->device->setCapability(AUD_CAPS_SOURCE_PITCH, &caps))
{
return 0;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the sound pitch!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_loop_count_doc,
"The (remaining) loop count of the sound. A negative value indicates infinity.");
static int
Handle_set_loop_count(Handle *self, PyObject* args, void* nothing)
{
int loops;
if(!PyArg_Parse(args, "i", &loops))
return -1;
Device* device = (Device*)self->device;
try
{
AUD_Message message;
message.loopcount = loops;
message.type = AUD_MSG_LOOP;
if(device->device->sendMessage(self->handle, message))
{
return 0;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the loop count!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_relative_doc,
"Whether the source's position is relative or absolute to the listener.");
static PyObject *
Handle_get_relative(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
if(device->getSourceSetting(self->handle, AUD_3DSS_IS_RELATIVE) > 0)
{
Py_RETURN_TRUE;
}
else
{
Py_RETURN_FALSE;
}
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the status of the sound!");
}
return NULL;
}
static int
Handle_set_relative(Handle *self, PyObject* args, void* nothing)
{
if(!PyBool_Check(args))
{
PyErr_SetString(PyExc_TypeError, "Value is not a boolean!");
return -1;
}
float relative = (args == Py_True);
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_IS_RELATIVE, relative);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the status!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_min_gain_doc,
"The minimum gain of the source.");
static PyObject *
Handle_get_min_gain(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
return Py_BuildValue("f", device->getSourceSetting(self->handle, AUD_3DSS_MIN_GAIN));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the minimum gain of the sound!");
return NULL;
}
}
static int
Handle_set_min_gain(Handle *self, PyObject* args, void* nothing)
{
float gain;
if(!PyArg_Parse(args, "f", &gain))
return -1;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_MIN_GAIN, gain);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the minimum source gain!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_max_gain_doc,
"The maximum gain of the source.");
static PyObject *
Handle_get_max_gain(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
return Py_BuildValue("f", device->getSourceSetting(self->handle, AUD_3DSS_MAX_GAIN));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the maximum gain of the sound!");
return NULL;
}
}
static int
Handle_set_max_gain(Handle *self, PyObject* args, void* nothing)
{
float gain;
if(!PyArg_Parse(args, "f", &gain))
return -1;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_MAX_GAIN, gain);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the maximum source gain!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_reference_distance_doc,
"The reference distance of the source.");
static PyObject *
Handle_get_reference_distance(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
return Py_BuildValue("f", device->getSourceSetting(self->handle, AUD_3DSS_REFERENCE_DISTANCE));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the reference distance of the sound!");
return NULL;
}
}
static int
Handle_set_reference_distance(Handle *self, PyObject* args, void* nothing)
{
float distance;
if(!PyArg_Parse(args, "f", &distance))
return -1;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_REFERENCE_DISTANCE, distance);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the reference distance!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_max_distance_doc,
"The maximum distance of the source.");
static PyObject *
Handle_get_max_distance(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
return Py_BuildValue("f", device->getSourceSetting(self->handle, AUD_3DSS_MAX_DISTANCE));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the maximum distance of the sound!");
return NULL;
}}
static int
Handle_set_max_distance(Handle *self, PyObject* args, void* nothing)
{
float distance;
if(!PyArg_Parse(args, "f", &distance))
return -1;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_MAX_DISTANCE, distance);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the maximum distance!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_rolloff_factor_doc,
"The rolloff factor of the source.");
static PyObject *
Handle_get_rolloff_factor(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
return Py_BuildValue("f", device->getSourceSetting(self->handle, AUD_3DSS_ROLLOFF_FACTOR));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the rolloff factor of the sound!");
return NULL;
}
}
static int
Handle_set_rolloff_factor(Handle *self, PyObject* args, void* nothing)
{
float factor;
if(!PyArg_Parse(args, "f", &factor))
return -1;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_ROLLOFF_FACTOR, factor);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the rolloff factor!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_cone_inner_angle_doc,
"The cone inner angle of the source.");
static PyObject *
Handle_get_cone_inner_angle(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
return Py_BuildValue("f", device->getSourceSetting(self->handle, AUD_3DSS_CONE_INNER_ANGLE));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the cone inner angle of the sound!");
return NULL;
}
}
static int
Handle_set_cone_inner_angle(Handle *self, PyObject* args, void* nothing)
{
float angle;
if(!PyArg_Parse(args, "f", &angle))
return -1;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_CONE_INNER_ANGLE, angle);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the cone inner angle!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_cone_outer_angle_doc,
"The cone outer angle of the source.");
static PyObject *
Handle_get_cone_outer_angle(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
return Py_BuildValue("f", device->getSourceSetting(self->handle, AUD_3DSS_CONE_OUTER_ANGLE));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the cone outer angle of the sound!");
return NULL;
}
}
static int
Handle_set_cone_outer_angle(Handle *self, PyObject* args, void* nothing)
{
float angle;
if(!PyArg_Parse(args, "f", &angle))
return -1;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_CONE_OUTER_ANGLE, angle);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the cone outer angle!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Handle_cone_outer_gain_doc,
"The cone outer gain of the source.");
static PyObject *
Handle_get_cone_outer_gain(Handle *self, void* nothing)
{
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
return Py_BuildValue("f", device->getSourceSetting(self->handle, AUD_3DSS_CONE_OUTER_GAIN));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve the cone outer gain of the sound!");
return NULL;
}
}
static int
Handle_set_cone_outer_gain(Handle *self, PyObject* args, void* nothing)
{
float gain;
if(!PyArg_Parse(args, "f", &gain))
return -1;
Device* dev = (Device*)self->device;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(dev->device);
if(device)
{
device->setSourceSetting(self->handle, AUD_3DSS_CONE_OUTER_GAIN, gain);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set the cone outer gain!");
}
return -1;
}
static PyGetSetDef Handle_properties[] = {
{(char*)"position", (getter)Handle_get_position, (setter)Handle_set_position,
M_aud_Handle_position_doc, NULL },
{(char*)"keep", NULL, (setter)Handle_set_keep,
M_aud_Handle_keep_doc, NULL },
{(char*)"status", (getter)Handle_get_status, NULL,
M_aud_Handle_status_doc, NULL },
{(char*)"volume", (getter)Handle_get_volume, (setter)Handle_set_volume,
M_aud_Handle_volume_doc, NULL },
{(char*)"pitch", NULL, (setter)Handle_set_pitch,
M_aud_Handle_pitch_doc, NULL },
{(char*)"loop_count", NULL, (setter)Handle_set_loop_count,
M_aud_Handle_loop_count_doc, NULL },
{(char*)"relative", (getter)Handle_get_relative, (setter)Handle_set_relative,
M_aud_Handle_relative_doc, NULL },
{(char*)"min_gain", (getter)Handle_get_min_gain, (setter)Handle_set_min_gain,
M_aud_Handle_min_gain_doc, NULL },
{(char*)"max_gain", (getter)Handle_get_max_gain, (setter)Handle_set_max_gain,
M_aud_Handle_max_gain_doc, NULL },
{(char*)"reference_distance", (getter)Handle_get_reference_distance, (setter)Handle_set_reference_distance,
M_aud_Handle_reference_distance_doc, NULL },
{(char*)"max_distance", (getter)Handle_get_max_distance, (setter)Handle_set_max_distance,
M_aud_Handle_max_distance_doc, NULL },
{(char*)"rolloff_factor", (getter)Handle_get_rolloff_factor, (setter)Handle_set_rolloff_factor,
M_aud_Handle_rolloff_factor_doc, NULL },
{(char*)"cone_inner_angle", (getter)Handle_get_cone_inner_angle, (setter)Handle_set_cone_inner_angle,
M_aud_Handle_cone_inner_angle_doc, NULL },
{(char*)"cone_outer_angle", (getter)Handle_get_cone_outer_angle, (setter)Handle_set_cone_outer_angle,
M_aud_Handle_cone_outer_angle_doc, NULL },
{(char*)"cone_outer_gain", (getter)Handle_get_cone_outer_gain, (setter)Handle_set_cone_outer_gain,
M_aud_Handle_cone_outer_gain_doc, NULL },
{NULL} /* Sentinel */
};
PyDoc_STRVAR(M_aud_Handle_doc,
"Handle objects are playback handles that can be used to control "
"playback of a sound. If a sound is played back multiple times "
"then there are as many handles.");
static PyTypeObject HandleType = {
PyVarObject_HEAD_INIT(NULL, 0)
"aud.Handle", /* tp_name */
sizeof(Handle), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)Handle_dealloc,/* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
M_aud_Handle_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Handle_methods, /* tp_methods */
0, /* tp_members */
Handle_properties, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
};
// ========== Device ==================================================
static void
Device_dealloc(Device* self)
{
if(self->device)
delete self->device;
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyDoc_STRVAR(M_aud_Device_play_doc,
"play(sound[, keep])\n\n"
"Plays a sound.\n\n"
":arg sound: The sound to play.\n"
":type sound: aud.Sound\n"
":arg keep: Whether the sound should be kept paused in the device when its end is reached.\n"
":type keep: boolean\n"
":return: The playback handle.\n"
":rtype: aud.Handle");
static PyObject *
Device_play(Device *self, PyObject *args, PyObject *kwds)
{
PyObject* object;
PyObject* keepo = NULL;
bool keep = false;
static const char *kwlist[] = {"sound", "keep", NULL};
if(!PyArg_ParseTupleAndKeywords(args, kwds, "O|O", const_cast<char**>(kwlist), &object, &keepo))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
if(keepo != NULL)
{
if(!PyBool_Check(keepo))
{
PyErr_SetString(PyExc_TypeError, "keep is not a boolean!");
return NULL;
}
keep = keepo == Py_True;
}
Sound* sound = (Sound*)object;
Handle *handle;
handle = (Handle*)HandleType.tp_alloc(&HandleType, 0);
if(handle != NULL)
{
handle->device = (PyObject*)self;
Py_INCREF(self);
try
{
handle->handle = self->device->play(sound->factory, keep);
}
catch(AUD_Exception&)
{
Py_DECREF(handle);
PyErr_SetString(AUDError, "Couldn't play the sound!");
return NULL;
}
}
return (PyObject *)handle;
}
PyDoc_STRVAR(M_aud_Device_lock_doc,
"lock()\n\n"
"Locks the device so that it's guaranteed, that no samples are "
"read from the streams until the unlock is called. The device has "
"to be unlocked as often as locked to be able to continue "
"playback. Make sure the time between locking and unlocking is as "
"short as possible to avoid clicks.");
static PyObject *
Device_lock(Device *self)
{
try
{
self->device->lock();
Py_RETURN_NONE;
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't lock the device!");
return NULL;
}
}
PyDoc_STRVAR(M_aud_Device_unlock_doc,
"unlock()\n\n"
"Unlocks the device after a lock call, see lock() for details.");
static PyObject *
Device_unlock(Device *self)
{
try
{
self->device->unlock();
Py_RETURN_NONE;
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't unlock the device!");
return NULL;
}
}
PyDoc_STRVAR(M_aud_Device_play3D_doc,
"play3d(sound[, keep])\n\n"
"Plays a sound 3 dimensional if possible.\n\n"
":arg sound: The sound to play.\n"
":type sound: aud.Sound\n"
":arg keep: Whether the sound should be kept paused in the device when its end is reached.\n"
":type keep: boolean\n"
":return: The playback handle.\n"
":rtype: aud.Handle");
static PyObject *
Device_play3D(Device *self, PyObject *args, PyObject *kwds)
{
PyObject* object;
PyObject* keepo = NULL;
bool keep = false;
static const char *kwlist[] = {"sound", "keep", NULL};
if(!PyArg_ParseTupleAndKeywords(args, kwds, "O|O", const_cast<char**>(kwlist), &object, &keepo))
return NULL;
if(!PyObject_TypeCheck(object, &SoundType))
{
PyErr_SetString(PyExc_TypeError, "Object is not of type aud.Sound!");
return NULL;
}
if(keepo != NULL)
{
if(!PyBool_Check(keepo))
{
PyErr_SetString(PyExc_TypeError, "keep is not a boolean!");
return NULL;
}
keep = keepo == Py_True;
}
Sound* sound = (Sound*)object;
Handle *handle;
handle = (Handle*)HandleType.tp_alloc(&HandleType, 0);
if(handle != NULL)
{
handle->device = (PyObject*)self;
Py_INCREF(self);
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(self->device);
if(device)
{
handle->handle = device->play3D(sound->factory, keep);
}
else
{
Py_DECREF(handle);
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
Py_DECREF(handle);
PyErr_SetString(AUDError, "Couldn't play the sound!");
return NULL;
}
}
return (PyObject *)handle;
}
PyDoc_STRVAR(M_aud_Device_update_listener_doc,
"update_listener(info)\n\n"
"Updates the 3D information of the listener.\n\n"
":arg info: The 3D info in the format (fff)(fff)((fff)(fff)(fff))."
" Position, velocity and a 3x3 orientation matrix.\n"
":type info: float tuple");
static PyObject *
Device_update_listener(Device *self, PyObject *args)
{
AUD_3DData data;
if(!PyArg_ParseTuple(args, "(fff)(fff)((fff)(fff)(fff))",
&data.position[0], &data.position[1], &data.position[2],
&data.velocity[0], &data.velocity[1], &data.velocity[2],
&data.orientation[0], &data.orientation[1], &data.orientation[2],
&data.orientation[3], &data.orientation[4], &data.orientation[5],
&data.orientation[6], &data.orientation[7], &data.orientation[8]))
return NULL;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(self->device);
if(device)
{
device->updateListener(data);
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't update the listener!");
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(M_aud_Device_OpenAL_doc,
"OpenAL([frequency[, buffer_size]])\n\n"
"Creates an OpenAL device.\n\n"
":arg frequency: The prefered sampling frequency.\n"
":type frequency: integer\n"
":arg buffer_size: The size of a playback buffer, "
"must be at least 128.\n"
":type buffer_size: integer\n"
":return: The created aud.Device object.\n"
":rtype: aud.Device");
static PyObject *
Device_OpenAL(PyTypeObject *type, PyObject *args, PyObject *kwds);
PyDoc_STRVAR(M_aud_Device_SDL_doc,
"SDL([frequency[, buffer_size]])\n\n"
"Creates an SDL device.\n\n"
":arg frequency: The sampling frequency.\n"
":type frequency: integer\n"
":arg buffer_size: The size of the playback buffer, "
"must be at least 128.\n"
":type buffer_size: integer\n"
":return: The created aud.Device object.\n"
":rtype: aud.Device");
static PyObject *
Device_SDL(PyTypeObject *type, PyObject *args, PyObject *kwds);
PyDoc_STRVAR(M_aud_Device_Jack_doc,
"Jack([channels[, buffer_size]])\n\n"
"Creates a Jack device.\n\n"
":arg channels: The count of channels.\n"
":type channels: integer\n"
":arg buffer_size: The size of the playback buffer, "
"must be at least 128.\n"
":type buffer_size: integer\n"
":return: The created aud.Device object.\n"
":rtype: aud.Device");
static PyObject *
Device_Jack(PyTypeObject *type, PyObject *args, PyObject *kwds);
PyDoc_STRVAR(M_aud_Device_Null_doc,
"Null()\n\n"
"Creates a Null device.\n\n"
":return: The created aud.Device object.\n"
":rtype: aud.Device");
static PyObject *
Device_Null(PyTypeObject *type);
static PyMethodDef Device_methods[] = {
{"play", (PyCFunction)Device_play, METH_VARARGS | METH_KEYWORDS,
M_aud_Device_play_doc
},
{"lock", (PyCFunction)Device_lock, METH_NOARGS,
M_aud_Device_lock_doc
},
{"unlock", (PyCFunction)Device_unlock, METH_NOARGS,
M_aud_Device_unlock_doc
},
{"play3D", (PyCFunction)Device_play3D, METH_VARARGS | METH_KEYWORDS,
M_aud_Device_play3D_doc
},
{"update_listener", (PyCFunction)Device_update_listener, METH_VARARGS,
M_aud_Device_update_listener_doc
},
{"OpenAL", (PyCFunction)Device_OpenAL, METH_VARARGS | METH_STATIC | METH_KEYWORDS,
M_aud_Device_OpenAL_doc
},
{"SDL", (PyCFunction)Device_SDL, METH_VARARGS | METH_STATIC | METH_KEYWORDS,
M_aud_Device_SDL_doc
},
{"Jack", (PyCFunction)Device_Jack, METH_VARARGS | METH_STATIC | METH_KEYWORDS,
M_aud_Device_Jack_doc
},
{"Null", (PyCFunction)Device_Null, METH_NOARGS | METH_STATIC,
M_aud_Device_Null_doc
},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(M_aud_Device_rate_doc,
"The sampling rate of the device in Hz.");
static PyObject *
Device_get_rate(Device *self, void* nothing)
{
try
{
AUD_DeviceSpecs specs = self->device->getSpecs();
return Py_BuildValue("i", specs.rate);
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve device stats!");
return NULL;
}
}
PyDoc_STRVAR(M_aud_Device_format_doc,
"The native sample format of the device.");
static PyObject *
Device_get_format(Device *self, void* nothing)
{
try
{
AUD_DeviceSpecs specs = self->device->getSpecs();
return Py_BuildValue("i", specs.format);
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve device stats!");
return NULL;
}
}
PyDoc_STRVAR(M_aud_Device_channels_doc,
"The channel count of the device.");
static PyObject *
Device_get_channels(Device *self, void* nothing)
{
try
{
AUD_DeviceSpecs specs = self->device->getSpecs();
return Py_BuildValue("i", specs.channels);
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve device stats!");
return NULL;
}
}
PyDoc_STRVAR(M_aud_Device_volume_doc,
"The overall volume of the device.");
static PyObject *
Device_get_volume(Device *self, void* nothing)
{
try
{
float volume = 0.0;
if(self->device->getCapability(AUD_CAPS_VOLUME, &volume))
return Py_BuildValue("f", volume);
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve device volume!");
return NULL;
}
Py_RETURN_NAN;
}
static int
Device_set_volume(Device *self, PyObject* args, void* nothing)
{
float volume;
if(!PyArg_Parse(args, "f", &volume))
return -1;
try
{
if(self->device->setCapability(AUD_CAPS_VOLUME, &volume))
return 0;
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set device volume!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Device_speed_of_sound_doc,
"The speed of sound of the device.");
static PyObject *
Device_get_speed_of_sound(Device *self, void* nothing)
{
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(self->device);
if(device)
{
return Py_BuildValue("f", device->getSetting(AUD_3DS_SPEED_OF_SOUND));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve device speed of sound!");
return NULL;
}
}
static int
Device_set_speed_of_sound(Device *self, PyObject* args, void* nothing)
{
float speed;
if(!PyArg_Parse(args, "f", &speed))
return -1;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(self->device);
if(device)
{
device->setSetting(AUD_3DS_SPEED_OF_SOUND, speed);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set device speed of sound!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Device_doppler_factor_doc,
"The doppler factor of the device.");
static PyObject *
Device_get_doppler_factor(Device *self, void* nothing)
{
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(self->device);
if(device)
{
return Py_BuildValue("f", device->getSetting(AUD_3DS_DOPPLER_FACTOR));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve device doppler factor!");
return NULL;
}
}
static int
Device_set_doppler_factor(Device *self, PyObject* args, void* nothing)
{
float factor;
if(!PyArg_Parse(args, "f", &factor))
return -1;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(self->device);
if(device)
{
device->setSetting(AUD_3DS_DOPPLER_FACTOR, factor);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set device doppler factor!");
}
return -1;
}
PyDoc_STRVAR(M_aud_Device_distance_model_doc,
"The distance model of the device.");
static PyObject *
Device_get_distance_model(Device *self, void* nothing)
{
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(self->device);
if(device)
{
return Py_BuildValue("i", int(device->getSetting(AUD_3DS_DISTANCE_MODEL)));
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
return NULL;
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't retrieve device distance model!");
return NULL;
}
}
static int
Device_set_distance_model(Device *self, PyObject* args, void* nothing)
{
int model;
if(!PyArg_Parse(args, "i", &model))
return -1;
try
{
AUD_I3DDevice* device = dynamic_cast<AUD_I3DDevice*>(self->device);
if(device)
{
device->setSetting(AUD_3DS_DISTANCE_MODEL, model);
return 0;
}
else
{
PyErr_SetString(AUDError, "Device is not a 3D device!");
}
}
catch(AUD_Exception&)
{
PyErr_SetString(AUDError, "Couldn't set device distance model!");
}
return -1;
}
static PyGetSetDef Device_properties[] = {
{(char*)"rate", (getter)Device_get_rate, NULL,
M_aud_Device_rate_doc, NULL },
{(char*)"format", (getter)Device_get_format, NULL,
M_aud_Device_format_doc, NULL },
{(char*)"channels", (getter)Device_get_channels, NULL,
M_aud_Device_channels_doc, NULL },
{(char*)"volume", (getter)Device_get_volume, (setter)Device_set_volume,
M_aud_Device_volume_doc, NULL },
{(char*)"speed_of_sound", (getter)Device_get_speed_of_sound, (setter)Device_set_speed_of_sound,
M_aud_Device_speed_of_sound_doc, NULL },
{(char*)"doppler_factor", (getter)Device_get_doppler_factor, (setter)Device_set_doppler_factor,
M_aud_Device_doppler_factor_doc, NULL },
{(char*)"distance_model", (getter)Device_get_distance_model, (setter)Device_set_distance_model,
M_aud_Device_distance_model_doc, NULL },
{NULL} /* Sentinel */
};
PyDoc_STRVAR(M_aud_Device_doc,
"Device objects represent an audio output backend like OpenAL or "
"SDL, but might also represent a file output or RAM buffer "
"output.");
static PyTypeObject DeviceType = {
PyVarObject_HEAD_INIT(NULL, 0)
"aud.Device", /* tp_name */
sizeof(Device), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)Device_dealloc,/* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
M_aud_Device_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Device_methods, /* tp_methods */
0, /* tp_members */
Device_properties, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
};
static PyObject *
Device_OpenAL(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
#ifdef WITH_OPENAL
int buffersize = AUD_DEFAULT_BUFFER_SIZE;
int frequency = AUD_RATE_44100;
static const char *kwlist[] = {"frequency", "buffer_size", NULL};
if(!PyArg_ParseTupleAndKeywords(args, kwds, "|ii", const_cast<char**>(kwlist), &frequency, &buffersize))
return NULL;
if(buffersize < 128)
{
PyErr_SetString(PyExc_ValueError, "buffer_size must be greater than 127!");
return NULL;
}
Device *self;
self = (Device*)DeviceType.tp_alloc(&DeviceType, 0);
if(self != NULL)
{
try
{
AUD_DeviceSpecs specs;
specs.rate = static_cast<AUD_SampleRate>(frequency);
specs.channels = AUD_CHANNELS_STEREO;
specs.format = AUD_FORMAT_S16;
self->device = new AUD_OpenALDevice(specs, buffersize);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "OpenAL device couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
#else
PyErr_SetString(AUDError, "OpenAL device couldn't be created!");
return NULL;
#endif
}
static PyObject *
Device_SDL(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
#ifdef WITH_SDL
int buffersize = AUD_DEFAULT_BUFFER_SIZE;
int frequency = AUD_RATE_44100;
static const char *kwlist[] = {"frequency", "buffer_size", NULL};
if(!PyArg_ParseTupleAndKeywords(args, kwds, "|ii", const_cast<char**>(kwlist), &frequency, &buffersize))
return NULL;
if(buffersize < 128)
{
PyErr_SetString(PyExc_ValueError, "buffer_size must be greater than 127!");
return NULL;
}
Device *self;
self = (Device*)DeviceType.tp_alloc(&DeviceType, 0);
if(self != NULL)
{
try
{
AUD_DeviceSpecs specs;
specs.rate = static_cast<AUD_SampleRate>(frequency);
specs.channels = AUD_CHANNELS_STEREO;
specs.format = AUD_FORMAT_S16;
self->device = new AUD_SDLDevice(specs, buffersize);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "SDL device couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
#else
PyErr_SetString(AUDError, "SDL device couldn't be created!");
return NULL;
#endif
}
static PyObject *
Device_Jack(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
#ifdef WITH_JACK
int buffersize = AUD_DEFAULT_BUFFER_SIZE;
int channels = AUD_CHANNELS_STEREO;
static const char *kwlist[] = {"channels", "buffer_size", NULL};
if(!PyArg_ParseTupleAndKeywords(args, kwds, "|ii", const_cast<char**>(kwlist), &channels, &buffersize))
return NULL;
if(buffersize < 128)
{
PyErr_SetString(PyExc_ValueError, "buffer_size must be greater than 127!");
return NULL;
}
Device *self;
self = (Device*)DeviceType.tp_alloc(&DeviceType, 0);
if(self != NULL)
{
try
{
AUD_DeviceSpecs specs;
specs.rate = AUD_RATE_44100;
specs.channels = static_cast<AUD_Channels>(channels);
specs.format = AUD_FORMAT_FLOAT32;
self->device = new AUD_JackDevice(specs, buffersize);
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Jack device couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
#else
PyErr_SetString(AUDError, "Jack device couldn't be created!");
return NULL;
#endif
}
static PyObject *
Device_Null(PyTypeObject *type)
{
Device *self;
self = (Device*)DeviceType.tp_alloc(&DeviceType, 0);
if(self != NULL)
{
try
{
self->device = new AUD_NULLDevice();
}
catch(AUD_Exception&)
{
Py_DECREF(self);
PyErr_SetString(AUDError, "Null device couldn't be created!");
return NULL;
}
}
return (PyObject *)self;
}
PyObject *
Device_empty()
{
return DeviceType.tp_alloc(&DeviceType, 0);
}
// ====================================================================
PyDoc_STRVAR(M_aud_doc,
"This module provides access to the audaspace audio library.");
static struct PyModuleDef audmodule = {
PyModuleDef_HEAD_INIT,
"aud", /* name of module */
M_aud_doc, /* module documentation */
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
NULL, NULL, NULL, NULL, NULL
};
PyMODINIT_FUNC
PyInit_aud(void)
{
PyObject* m;
if(PyType_Ready(&SoundType) < 0)
return NULL;
if(PyType_Ready(&DeviceType) < 0)
return NULL;
if(PyType_Ready(&HandleType) < 0)
return NULL;
m = PyModule_Create(&audmodule);
if(m == NULL)
return NULL;
Py_INCREF(&SoundType);
PyModule_AddObject(m, "Sound", (PyObject*)&SoundType);
Py_INCREF(&DeviceType);
PyModule_AddObject(m, "Device", (PyObject*)&DeviceType);
Py_INCREF(&HandleType);
PyModule_AddObject(m, "Handle", (PyObject*)&HandleType);
AUDError = PyErr_NewException("aud.error", NULL, NULL);
Py_INCREF(AUDError);
PyModule_AddObject(m, "error", AUDError);
// format constants
PY_MODULE_ADD_CONSTANT(m, AUD_FORMAT_FLOAT32);
PY_MODULE_ADD_CONSTANT(m, AUD_FORMAT_FLOAT64);
PY_MODULE_ADD_CONSTANT(m, AUD_FORMAT_INVALID);
PY_MODULE_ADD_CONSTANT(m, AUD_FORMAT_S16);
PY_MODULE_ADD_CONSTANT(m, AUD_FORMAT_S24);
PY_MODULE_ADD_CONSTANT(m, AUD_FORMAT_S32);
PY_MODULE_ADD_CONSTANT(m, AUD_FORMAT_U8);
// status constants
PY_MODULE_ADD_CONSTANT(m, AUD_STATUS_INVALID);
PY_MODULE_ADD_CONSTANT(m, AUD_STATUS_PAUSED);
PY_MODULE_ADD_CONSTANT(m, AUD_STATUS_PLAYING);
// distance model constants
PY_MODULE_ADD_CONSTANT(m, AUD_DISTANCE_MODEL_EXPONENT);
PY_MODULE_ADD_CONSTANT(m, AUD_DISTANCE_MODEL_EXPONENT_CLAMPED);
PY_MODULE_ADD_CONSTANT(m, AUD_DISTANCE_MODEL_INVERSE);
PY_MODULE_ADD_CONSTANT(m, AUD_DISTANCE_MODEL_INVERSE_CLAMPED);
PY_MODULE_ADD_CONSTANT(m, AUD_DISTANCE_MODEL_LINEAR);
PY_MODULE_ADD_CONSTANT(m, AUD_DISTANCE_MODEL_LINEAR_CLAMPED);
PY_MODULE_ADD_CONSTANT(m, AUD_DISTANCE_MODEL_NONE);
return m;
}