blender/release/scripts/op/object.py
Campbell Barton 8177f343a0 - object.add_shape_key(name="Key", from_mix=True)
- ensure new shape key names are unique
- Transfer ShapeKey now can have its settings changes (redo operator)
2009-12-28 18:03:04 +00:00

321 lines
12 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
import bpy
from bpy.props import *
class SelectPattern(bpy.types.Operator):
'''Select object matching a naming pattern.'''
bl_idname = "object.select_pattern"
bl_label = "Select Pattern"
bl_register = True
bl_undo = True
pattern = StringProperty(name="Pattern", description="Name filter using '*' and '?' wildcard chars", maxlen=32, default="*")
case_sensitive = BoolProperty(name="Case Sensitive", description="Do a case sensitive compare", default=False)
extend = BoolProperty(name="Extend", description="Extend the existing selection", default=True)
def execute(self, context):
import fnmatch
if self.properties.case_sensitive:
pattern_match = fnmatch.fnmatchcase
else:
pattern_match = lambda a, b: fnmatch.fnmatchcase(a.upper(), b.upper())
obj = context.object
if obj and obj.mode == 'POSE':
items = obj.data.bones
elif obj and obj.type == 'ARMATURE' and obj.mode == 'EDIT':
items = obj.data.edit_bones
else:
items = context.visible_objects
# Can be pose bones or objects
for item in items:
if pattern_match(item.name, self.properties.pattern):
item.selected = True
elif not self.properties.extend:
item.selected = False
return {'FINISHED'}
def invoke(self, context, event):
wm = context.manager
# return wm.invoke_props_popup(self, event)
wm.invoke_props_popup(self, event)
return {'RUNNING_MODAL'}
def draw(self, context):
layout = self.layout
props = self.properties
layout.prop(props, "pattern")
row = layout.row()
row.prop(props, "case_sensitive")
row.prop(props, "extend")
class SubdivisionSet(bpy.types.Operator):
'''Sets a Subdivision Surface Level (1-5)'''
bl_idname = "object.subdivision_set"
bl_label = "Subdivision Set"
bl_register = True
bl_undo = True
level = IntProperty(name="Level",
default=1, min=-100, max=100, soft_min=-6, soft_max=6)
relative = BoolProperty(name="Relative", description="Apply the subsurf level as an offset relative to the current level", default=False)
def poll(self, context):
obs = context.selected_editable_objects
return (obs is not None)
def execute(self, context):
level = self.properties.level
relative = self.properties.relative
if relative and level == 0:
return {'CANCELLED'} # nothing to do
def set_object_subd(obj):
for mod in obj.modifiers:
if mod.type == 'MULTIRES':
if level <= mod.total_levels:
if obj.mode == 'SCULPT':
if relative:
mod.sculpt_levels += level
else:
if mod.sculpt_levels != level:
mod.sculpt_levels = level
elif obj.mode == 'OBJECT':
if relative:
mod.levels += level
else:
if mod.levels != level:
mod.levels = level
return
elif mod.type == 'SUBSURF':
if relative:
mod.levels += level
else:
if mod.levels != level:
mod.levels = level
return
# adda new modifier
mod = obj.modifiers.new("Subsurf", 'SUBSURF')
mod.levels = level
for obj in context.selected_editable_objects:
set_object_subd(obj)
return {'FINISHED'}
class Retopo(bpy.types.Operator):
'''TODO - doc'''
bl_idname = "object.retopology"
bl_label = "Retopology from Grease Pencil"
bl_register = True
bl_undo = True
def execute(self, context):
import retopo
retopo.main()
return {'FINISHED'}
class ShapeTransfer(bpy.types.Operator):
'''Copy the active objects current shape to other selected objects with the same number of verts'''
bl_idname = "object.shape_key_transfer"
bl_label = "Transfer Shape Key"
bl_register = True
bl_undo = True
mode = EnumProperty(items=(
('OFFSET', "Offset", "Apply the relative positional offset"),
('RELATIVE_FACE', "Relative Face", "Calculate the geometricly relative position (using faces)."),
('RELATIVE_EDGE', "Relative Edge", "Calculate the geometricly relative position (using edges).")),
name="Transformation Mode",
description="Method to apply relative shape positions to the new shape",
default='OFFSET')
use_clamp = BoolProperty(name="Clamp Offset",
description="Clamp the transformation to the distance each vertex moves in the original shape.",
default=False)
def _main(self, ob_act, objects, mode='OFFSET', use_clamp=False):
def me_nos(verts):
return [v.normal.copy() for v in verts]
def me_cos(verts):
return [v.co.copy() for v in verts]
def ob_add_shape(ob):
me = ob.data
ob.add_shape_key(from_mix=False)
if len(me.shape_keys.keys) == 1:
ob.add_shape_key(from_mix=False) # we need a rest
ob.active_shape_key_index = len(me.shape_keys.keys) - 1
ob.shape_key_lock = True
from Geometry import BarycentricTransform
from Mathutils import Vector
if use_clamp and mode == 'OFFSET':
use_clamp = False
me = ob_act.data
orig_shape_coords = me_cos(ob_act.active_shape_key.data)
orig_normals = me_nos(me.verts)
orig_coords = me_cos(me.verts)
for ob_other in objects:
me_other = ob_other.data
if len(me_other.verts) != len(me.verts):
self.report({'WARNING'}, "Skipping '%s', vertex count differs" % ob_other.name)
continue
target_normals = me_nos(me_other.verts)
target_coords = me_cos(me_other.verts)
ob_add_shape(ob_other)
# editing the final coords, only list that stores wrapped coords
target_shape_coords = [v.co for v in ob_other.active_shape_key.data]
median_coords = [[] for i in range(len(me.verts))]
# Method 1, edge
if mode == 'OFFSET':
for i, vert_cos in enumerate(median_coords):
vert_cos.append(target_coords[i] + (orig_shape_coords[i] - orig_coords[i]))
elif mode == 'RELATIVE_FACE':
for face in me.faces:
i1, i2, i3, i4 = face.verts_raw
if i4 != 0:
pt = BarycentricTransform(orig_shape_coords[i1],
orig_coords[i4], orig_coords[i1], orig_coords[i2],
target_coords[i4], target_coords[i1], target_coords[i2])
median_coords[i1].append(pt)
pt = BarycentricTransform(orig_shape_coords[i2],
orig_coords[i1], orig_coords[i2], orig_coords[i3],
target_coords[i1], target_coords[i2], target_coords[i3])
median_coords[i2].append(pt)
pt = BarycentricTransform(orig_shape_coords[i3],
orig_coords[i2], orig_coords[i3], orig_coords[i4],
target_coords[i2], target_coords[i3], target_coords[i4])
median_coords[i3].append(pt)
pt = BarycentricTransform(orig_shape_coords[i4],
orig_coords[i3], orig_coords[i4], orig_coords[i1],
target_coords[i3], target_coords[i4], target_coords[i1])
median_coords[i4].append(pt)
else:
pt = BarycentricTransform(orig_shape_coords[i1],
orig_coords[i3], orig_coords[i1], orig_coords[i2],
target_coords[i3], target_coords[i1], target_coords[i2])
median_coords[i1].append(pt)
pt = BarycentricTransform(orig_shape_coords[i2],
orig_coords[i1], orig_coords[i2], orig_coords[i3],
target_coords[i1], target_coords[i2], target_coords[i3])
median_coords[i2].append(pt)
pt = BarycentricTransform(orig_shape_coords[i3],
orig_coords[i2], orig_coords[i3], orig_coords[i1],
target_coords[i2], target_coords[i3], target_coords[i1])
median_coords[i3].append(pt)
elif mode == 'RELATIVE_EDGE':
for ed in me.edges:
i1, i2 = ed.verts
v1, v2 = orig_coords[i1], orig_coords[i2]
edge_length = (v1 - v2).length
n1loc = v1 + orig_normals[i1] * edge_length
n2loc = v2 + orig_normals[i2] * edge_length
# now get the target nloc's
v1_to, v2_to = target_coords[i1], target_coords[i2]
edlen_to = (v1_to - v2_to).length
n1loc_to = v1_to + target_normals[i1] * edlen_to
n2loc_to = v2_to + target_normals[i2] * edlen_to
pt = BarycentricTransform(orig_shape_coords[i1],
v2, v1, n1loc,
v2_to, v1_to, n1loc_to)
median_coords[i1].append(pt)
pt = BarycentricTransform(orig_shape_coords[i2],
v1, v2, n2loc,
v1_to, v2_to, n2loc_to)
median_coords[i2].append(pt)
# apply the offsets to the new shape
from functools import reduce
VectorAdd = Vector.__add__
for i, vert_cos in enumerate(median_coords):
if vert_cos:
co = reduce(VectorAdd, vert_cos) / len(vert_cos)
if use_clamp:
# clamp to the same movement as the original
# breaks copy between different scaled meshes.
len_from = (orig_shape_coords[i] - orig_coords[i]).length
ofs = co - target_coords[i]
ofs.length = len_from
co = target_coords[i] + ofs
target_shape_coords[i][:] = co
return {'FINISHED'}
def poll(self, context):
obj = context.active_object
return (obj and obj.mode != 'EDIT')
def execute(self, context):
C = bpy.context
ob_act = C.active_object
objects = [ob for ob in C.selected_editable_objects if ob != ob_act]
return self._main(ob_act, objects, self.properties.mode, self.properties.use_clamp)
bpy.types.register(SelectPattern)
bpy.types.register(SubdivisionSet)
bpy.types.register(Retopo)
bpy.types.register(ShapeTransfer)