blender/intern/cycles/device/device.cpp
Mai Lavelle ec8ae4d5e9 Cycles: Pack kernel textures into buffers for OpenCL
Image textures were being packed into a single buffer for OpenCL, which
limited the amount of memory available for images to the size of one
buffer (usually 4gb on AMD hardware). By packing textures into multiple
buffers that limit is removed, while simultaneously reducing the number
of buffers that need to be passed to each kernel.

Benchmarks were within 2%.

Fixes T51554.

Differential Revision: https://developer.blender.org/D2745
2017-08-08 07:12:04 -04:00

418 lines
10 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
#include "device/device.h"
#include "device/device_intern.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_half.h"
#include "util/util_math.h"
#include "util/util_opengl.h"
#include "util/util_time.h"
#include "util/util_types.h"
#include "util/util_vector.h"
#include "util/util_string.h"
CCL_NAMESPACE_BEGIN
bool Device::need_types_update = true;
bool Device::need_devices_update = true;
vector<DeviceType> Device::types;
vector<DeviceInfo> Device::devices;
/* Device Requested Features */
std::ostream& operator <<(std::ostream &os,
const DeviceRequestedFeatures& requested_features)
{
os << "Experimental features: "
<< (requested_features.experimental ? "On" : "Off") << std::endl;
os << "Max closure count: " << requested_features.max_closure << std::endl;
os << "Max nodes group: " << requested_features.max_nodes_group << std::endl;
/* TODO(sergey): Decode bitflag into list of names. */
os << "Nodes features: " << requested_features.nodes_features << std::endl;
os << "Use Hair: "
<< string_from_bool(requested_features.use_hair) << std::endl;
os << "Use Object Motion: "
<< string_from_bool(requested_features.use_object_motion) << std::endl;
os << "Use Camera Motion: "
<< string_from_bool(requested_features.use_camera_motion) << std::endl;
os << "Use Baking: "
<< string_from_bool(requested_features.use_baking) << std::endl;
os << "Use Subsurface: "
<< string_from_bool(requested_features.use_subsurface) << std::endl;
os << "Use Volume: "
<< string_from_bool(requested_features.use_volume) << std::endl;
os << "Use Branched Integrator: "
<< string_from_bool(requested_features.use_integrator_branched) << std::endl;
os << "Use Patch Evaluation: "
<< string_from_bool(requested_features.use_patch_evaluation) << std::endl;
os << "Use Transparent Shadows: "
<< string_from_bool(requested_features.use_transparent) << std::endl;
os << "Use Principled BSDF: "
<< string_from_bool(requested_features.use_principled) << std::endl;
os << "Use Denoising: "
<< string_from_bool(requested_features.use_denoising) << std::endl;
return os;
}
/* Device */
Device::~Device()
{
if(!background && vertex_buffer != 0) {
glDeleteBuffers(1, &vertex_buffer);
}
}
void Device::pixels_alloc(device_memory& mem)
{
mem_alloc("pixels", mem, MEM_READ_WRITE);
}
void Device::pixels_copy_from(device_memory& mem, int y, int w, int h)
{
if(mem.data_type == TYPE_HALF)
mem_copy_from(mem, y, w, h, sizeof(half4));
else
mem_copy_from(mem, y, w, h, sizeof(uchar4));
}
void Device::pixels_free(device_memory& mem)
{
mem_free(mem);
}
void Device::draw_pixels(device_memory& rgba, int y, int w, int h, int dx, int dy, int width, int height, bool transparent,
const DeviceDrawParams &draw_params)
{
pixels_copy_from(rgba, y, w, h);
if(transparent) {
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
glColor3f(1.0f, 1.0f, 1.0f);
if(rgba.data_type == TYPE_HALF) {
/* for multi devices, this assumes the inefficient method that we allocate
* all pixels on the device even though we only render to a subset */
GLhalf *data_pointer = (GLhalf*)rgba.data_pointer;
float vbuffer[16], *basep;
float *vp = NULL;
data_pointer += 4*y*w;
/* draw half float texture, GLSL shader for display transform assumed to be bound */
GLuint texid;
glGenTextures(1, &texid);
glBindTexture(GL_TEXTURE_2D, texid);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, w, h, 0, GL_RGBA, GL_HALF_FLOAT, data_pointer);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glEnable(GL_TEXTURE_2D);
if(draw_params.bind_display_space_shader_cb) {
draw_params.bind_display_space_shader_cb();
}
if(GLEW_VERSION_1_5) {
if(!vertex_buffer)
glGenBuffers(1, &vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
/* invalidate old contents - avoids stalling if buffer is still waiting in queue to be rendered */
glBufferData(GL_ARRAY_BUFFER, 16 * sizeof(float), NULL, GL_STREAM_DRAW);
vp = (float *)glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
basep = NULL;
}
else {
basep = vbuffer;
vp = vbuffer;
}
if(vp) {
/* texture coordinate - vertex pair */
vp[0] = 0.0f;
vp[1] = 0.0f;
vp[2] = dx;
vp[3] = dy;
vp[4] = 1.0f;
vp[5] = 0.0f;
vp[6] = (float)width + dx;
vp[7] = dy;
vp[8] = 1.0f;
vp[9] = 1.0f;
vp[10] = (float)width + dx;
vp[11] = (float)height + dy;
vp[12] = 0.0f;
vp[13] = 1.0f;
vp[14] = dx;
vp[15] = (float)height + dy;
if(vertex_buffer)
glUnmapBuffer(GL_ARRAY_BUFFER);
}
glTexCoordPointer(2, GL_FLOAT, 4 * sizeof(float), basep);
glVertexPointer(2, GL_FLOAT, 4 * sizeof(float), ((char *)basep) + 2 * sizeof(float));
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
if(vertex_buffer) {
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if(draw_params.unbind_display_space_shader_cb) {
draw_params.unbind_display_space_shader_cb();
}
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
glDeleteTextures(1, &texid);
}
else {
/* fallback for old graphics cards that don't support GLSL, half float,
* and non-power-of-two textures */
glPixelZoom((float)width/(float)w, (float)height/(float)h);
glRasterPos2f(dx, dy);
uint8_t *pixels = (uint8_t*)rgba.data_pointer;
pixels += 4*y*w;
glDrawPixels(w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
glRasterPos2f(0.0f, 0.0f);
glPixelZoom(1.0f, 1.0f);
}
if(transparent)
glDisable(GL_BLEND);
}
Device *Device::create(DeviceInfo& info, Stats &stats, bool background)
{
Device *device;
switch(info.type) {
case DEVICE_CPU:
device = device_cpu_create(info, stats, background);
break;
#ifdef WITH_CUDA
case DEVICE_CUDA:
if(device_cuda_init())
device = device_cuda_create(info, stats, background);
else
device = NULL;
break;
#endif
#ifdef WITH_MULTI
case DEVICE_MULTI:
device = device_multi_create(info, stats, background);
break;
#endif
#ifdef WITH_NETWORK
case DEVICE_NETWORK:
device = device_network_create(info, stats, "127.0.0.1");
break;
#endif
#ifdef WITH_OPENCL
case DEVICE_OPENCL:
if(device_opencl_init())
device = device_opencl_create(info, stats, background);
else
device = NULL;
break;
#endif
default:
return NULL;
}
return device;
}
DeviceType Device::type_from_string(const char *name)
{
if(strcmp(name, "CPU") == 0)
return DEVICE_CPU;
else if(strcmp(name, "CUDA") == 0)
return DEVICE_CUDA;
else if(strcmp(name, "OPENCL") == 0)
return DEVICE_OPENCL;
else if(strcmp(name, "NETWORK") == 0)
return DEVICE_NETWORK;
else if(strcmp(name, "MULTI") == 0)
return DEVICE_MULTI;
return DEVICE_NONE;
}
string Device::string_from_type(DeviceType type)
{
if(type == DEVICE_CPU)
return "CPU";
else if(type == DEVICE_CUDA)
return "CUDA";
else if(type == DEVICE_OPENCL)
return "OPENCL";
else if(type == DEVICE_NETWORK)
return "NETWORK";
else if(type == DEVICE_MULTI)
return "MULTI";
return "";
}
vector<DeviceType>& Device::available_types()
{
if(need_types_update) {
types.clear();
types.push_back(DEVICE_CPU);
#ifdef WITH_CUDA
if(device_cuda_init())
types.push_back(DEVICE_CUDA);
#endif
#ifdef WITH_OPENCL
if(device_opencl_init())
types.push_back(DEVICE_OPENCL);
#endif
#ifdef WITH_NETWORK
types.push_back(DEVICE_NETWORK);
#endif
need_types_update = false;
}
return types;
}
vector<DeviceInfo>& Device::available_devices()
{
if(need_devices_update) {
devices.clear();
#ifdef WITH_CUDA
if(device_cuda_init())
device_cuda_info(devices);
#endif
#ifdef WITH_OPENCL
if(device_opencl_init())
device_opencl_info(devices);
#endif
device_cpu_info(devices);
#ifdef WITH_NETWORK
device_network_info(devices);
#endif
need_devices_update = false;
}
return devices;
}
string Device::device_capabilities()
{
string capabilities = "CPU device capabilities: ";
capabilities += device_cpu_capabilities() + "\n";
#ifdef WITH_CUDA
if(device_cuda_init()) {
capabilities += "\nCUDA device capabilities:\n";
capabilities += device_cuda_capabilities();
}
#endif
#ifdef WITH_OPENCL
if(device_opencl_init()) {
capabilities += "\nOpenCL device capabilities:\n";
capabilities += device_opencl_capabilities();
}
#endif
return capabilities;
}
DeviceInfo Device::get_multi_device(vector<DeviceInfo> subdevices)
{
assert(subdevices.size() > 1);
DeviceInfo info;
info.type = DEVICE_MULTI;
info.id = "MULTI";
info.description = "Multi Device";
info.multi_devices = subdevices;
info.num = 0;
info.has_bindless_textures = true;
foreach(DeviceInfo &device, subdevices) {
assert(device.type == info.multi_devices[0].type);
info.has_bindless_textures &= device.has_bindless_textures;
}
return info;
}
void Device::tag_update()
{
need_types_update = true;
need_devices_update = true;
}
void Device::free_memory()
{
need_types_update = true;
need_devices_update = true;
types.free_memory();
devices.free_memory();
}
device_sub_ptr::device_sub_ptr(Device *device, device_memory& mem, int offset, int size, MemoryType type)
: device(device)
{
ptr = device->mem_alloc_sub_ptr(mem, offset, size, type);
}
device_sub_ptr::~device_sub_ptr()
{
device->mem_free_sub_ptr(ptr);
}
CCL_NAMESPACE_END