forked from bartvdbraak/blender
436 lines
14 KiB
Python
436 lines
14 KiB
Python
# ##### BEGIN GPL LICENSE BLOCK #####
|
|
#
|
|
# This program is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU General Public License
|
|
# as published by the Free Software Foundation; either version 2
|
|
# of the License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software Foundation,
|
|
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
#
|
|
# ##### END GPL LICENSE BLOCK #####
|
|
|
|
# <pep8 compliant>
|
|
|
|
__all__ = (
|
|
"mesh_linked_faces",
|
|
"edge_face_count_dict",
|
|
"edge_face_count",
|
|
"edge_loops_from_faces",
|
|
"edge_loops_from_edges",
|
|
"ngon_tesselate",
|
|
)
|
|
|
|
def mesh_linked_faces(mesh):
|
|
"""
|
|
Splits the mesh into connected faces, use this for seperating cubes from
|
|
other mesh elements within 1 mesh datablock.
|
|
|
|
:arg mesh: the mesh used to group with.
|
|
:type mesh: :class:`Mesh`
|
|
:return: lists of lists containing faces.
|
|
:rtype: list
|
|
"""
|
|
|
|
# Build vert face connectivity
|
|
vert_faces = [[] for i in range(len(mesh.vertices))]
|
|
for f in mesh.faces:
|
|
for v in f.vertices:
|
|
vert_faces[v].append(f)
|
|
|
|
# sort faces into connectivity groups
|
|
face_groups = [[f] for f in mesh.faces]
|
|
face_mapping = list(range(len(mesh.faces))) # map old, new face location
|
|
|
|
# Now clump faces iterativly
|
|
ok = True
|
|
while ok:
|
|
ok = False
|
|
|
|
for i, f in enumerate(mesh.faces):
|
|
mapped_index = face_mapping[f.index]
|
|
mapped_group = face_groups[mapped_index]
|
|
|
|
for v in f.vertices:
|
|
for nxt_f in vert_faces[v]:
|
|
if nxt_f != f:
|
|
nxt_mapped_index = face_mapping[nxt_f.index]
|
|
|
|
# We are not a part of the same group
|
|
if mapped_index != nxt_mapped_index:
|
|
ok = True
|
|
|
|
# Assign mapping to this group so they all map to this group
|
|
for grp_f in face_groups[nxt_mapped_index]:
|
|
face_mapping[grp_f.index] = mapped_index
|
|
|
|
# Move faces into this group
|
|
mapped_group.extend(face_groups[nxt_mapped_index])
|
|
|
|
# remove reference to the list
|
|
face_groups[nxt_mapped_index] = None
|
|
|
|
# return all face groups that are not null
|
|
# this is all the faces that are connected in their own lists.
|
|
return [fg for fg in face_groups if fg]
|
|
|
|
|
|
def edge_face_count_dict(mesh):
|
|
"""
|
|
:return: dict of edge keys with their value set to the number of
|
|
faces using each edge.
|
|
:rtype: dict
|
|
"""
|
|
face_edge_keys = [face.edge_keys for face in mesh.faces]
|
|
face_edge_count = {}
|
|
for face_keys in face_edge_keys:
|
|
for key in face_keys:
|
|
try:
|
|
face_edge_count[key] += 1
|
|
except:
|
|
face_edge_count[key] = 1
|
|
|
|
return face_edge_count
|
|
|
|
|
|
def edge_face_count(mesh):
|
|
"""
|
|
:return: list face users for each item in mesh.edges.
|
|
:rtype: list
|
|
"""
|
|
edge_face_count_dict = edge_face_count_dict(mesh)
|
|
get = dict.get
|
|
return [get(edge_face_count_dict, ed.key, 0) for ed in mesh.edges]
|
|
|
|
|
|
def edge_loops_from_faces(mesh, faces=None, seams=()):
|
|
"""
|
|
Edge loops defined by faces
|
|
|
|
Takes me.faces or a list of faces and returns the edge loops
|
|
These edge loops are the edges that sit between quads, so they dont touch
|
|
1 quad, note: not connected will make 2 edge loops,
|
|
both only containing 2 edges.
|
|
|
|
return a list of edge key lists
|
|
[[(0, 1), (4, 8), (3, 8)], ...]
|
|
|
|
:arg mesh: the mesh used to get edge loops from.
|
|
:type mesh: :class:`Mesh`
|
|
:arg faces: optional face list to only use some of the meshes faces.
|
|
:type faces: :class:`MeshFaces`, sequence or or NoneType
|
|
:return: return a list of edge vertex index lists.
|
|
:rtype: list
|
|
"""
|
|
|
|
OTHER_INDEX = 2, 3, 0, 1 # opposite face index
|
|
|
|
if faces is None:
|
|
faces = mesh.faces
|
|
|
|
edges = {}
|
|
|
|
for f in faces:
|
|
# if len(f) == 4:
|
|
if f.vertices_raw[3] != 0:
|
|
edge_keys = f.edge_keys
|
|
for i, edkey in enumerate(f.edge_keys):
|
|
edges.setdefault(edkey, []).append(edge_keys[OTHER_INDEX[i]])
|
|
|
|
for edkey in seams:
|
|
edges[edkey] = []
|
|
|
|
# Collect edge loops here
|
|
edge_loops = []
|
|
|
|
for edkey, ed_adj in edges.items():
|
|
if 0 < len(ed_adj) < 3: # 1 or 2
|
|
# Seek the first edge
|
|
context_loop = [edkey, ed_adj[0]]
|
|
edge_loops.append(context_loop)
|
|
if len(ed_adj) == 2:
|
|
other_dir = ed_adj[1]
|
|
else:
|
|
other_dir = None
|
|
|
|
ed_adj[:] = []
|
|
|
|
flipped = False
|
|
|
|
while 1:
|
|
# from knowing the last 2, look for th next.
|
|
ed_adj = edges[context_loop[-1]]
|
|
if len(ed_adj) != 2:
|
|
|
|
if other_dir and flipped == False: # the original edge had 2 other edges
|
|
flipped = True # only flip the list once
|
|
context_loop.reverse()
|
|
ed_adj[:] = []
|
|
context_loop.append(other_dir) # save 1 lookiup
|
|
|
|
ed_adj = edges[context_loop[-1]]
|
|
if len(ed_adj) != 2:
|
|
ed_adj[:] = []
|
|
break
|
|
else:
|
|
ed_adj[:] = []
|
|
break
|
|
|
|
i = ed_adj.index(context_loop[-2])
|
|
context_loop.append(ed_adj[not i])
|
|
|
|
# Dont look at this again
|
|
ed_adj[:] = []
|
|
|
|
return edge_loops
|
|
|
|
|
|
def edge_loops_from_edges(mesh, edges=None):
|
|
"""
|
|
Edge loops defined by edges
|
|
|
|
Takes me.edges or a list of edges and returns the edge loops
|
|
|
|
return a list of vertex indices.
|
|
[ [1, 6, 7, 2], ...]
|
|
|
|
closed loops have matching start and end values.
|
|
"""
|
|
line_polys = []
|
|
|
|
# Get edges not used by a face
|
|
if edges is None:
|
|
edges = mesh.edges
|
|
|
|
if not hasattr(edges, "pop"):
|
|
edges = edges[:]
|
|
|
|
edge_dict = {ed.key: ed for ed in mesh.edges if ed.select}
|
|
|
|
while edges:
|
|
current_edge = edges.pop()
|
|
vert_end, vert_start = current_edge.vertices[:]
|
|
line_poly = [vert_start, vert_end]
|
|
|
|
ok = True
|
|
while ok:
|
|
ok = False
|
|
#for i, ed in enumerate(edges):
|
|
i = len(edges)
|
|
while i:
|
|
i -= 1
|
|
ed = edges[i]
|
|
v1, v2 = ed.vertices
|
|
if v1 == vert_end:
|
|
line_poly.append(v2)
|
|
vert_end = line_poly[-1]
|
|
ok = 1
|
|
del edges[i]
|
|
# break
|
|
elif v2 == vert_end:
|
|
line_poly.append(v1)
|
|
vert_end = line_poly[-1]
|
|
ok = 1
|
|
del edges[i]
|
|
#break
|
|
elif v1 == vert_start:
|
|
line_poly.insert(0, v2)
|
|
vert_start = line_poly[0]
|
|
ok = 1
|
|
del edges[i]
|
|
# break
|
|
elif v2 == vert_start:
|
|
line_poly.insert(0, v1)
|
|
vert_start = line_poly[0]
|
|
ok = 1
|
|
del edges[i]
|
|
#break
|
|
line_polys.append(line_poly)
|
|
|
|
return line_polys
|
|
|
|
|
|
def ngon_tesselate(from_data, indices, fix_loops=True):
|
|
'''
|
|
Takes a polyline of indices (fgon)
|
|
and returns a list of face indicie lists.
|
|
Designed to be used for importers that need indices for an fgon to create from existing verts.
|
|
|
|
from_data: either a mesh, or a list/tuple of vectors.
|
|
indices: a list of indices to use this list is the ordered closed polyline to fill, and can be a subset of the data given.
|
|
fix_loops: If this is enabled polylines that use loops to make multiple polylines are delt with correctly.
|
|
'''
|
|
|
|
from mathutils import Vector
|
|
vector_to_tuple = Vector.to_tuple
|
|
|
|
if not indices:
|
|
return []
|
|
|
|
def mlen(co):
|
|
return abs(co[0]) + abs(co[1]) + abs(co[2]) # manhatten length of a vector, faster then length
|
|
|
|
def vert_treplet(v, i):
|
|
return v, vector_to_tuple(v, 6), i, mlen(v)
|
|
|
|
def ed_key_mlen(v1, v2):
|
|
if v1[3] > v2[3]:
|
|
return v2[1], v1[1]
|
|
else:
|
|
return v1[1], v2[1]
|
|
|
|
if not PREF_FIX_LOOPS:
|
|
'''
|
|
Normal single concave loop filling
|
|
'''
|
|
if type(from_data) in (tuple, list):
|
|
verts = [Vector(from_data[i]) for ii, i in enumerate(indices)]
|
|
else:
|
|
verts = [from_data.vertices[i].co for ii, i in enumerate(indices)]
|
|
|
|
for i in range(len(verts) - 1, 0, -1): # same as reversed(xrange(1, len(verts))):
|
|
if verts[i][1] == verts[i - 1][0]:
|
|
verts.pop(i - 1)
|
|
|
|
fill = fill_polygon([verts])
|
|
|
|
else:
|
|
'''
|
|
Seperate this loop into multiple loops be finding edges that are used twice
|
|
This is used by lightwave LWO files a lot
|
|
'''
|
|
|
|
if type(from_data) in (tuple, list):
|
|
verts = [vert_treplet(Vector(from_data[i]), ii) for ii, i in enumerate(indices)]
|
|
else:
|
|
verts = [vert_treplet(from_data.vertices[i].co, ii) for ii, i in enumerate(indices)]
|
|
|
|
edges = [(i, i - 1) for i in range(len(verts))]
|
|
if edges:
|
|
edges[0] = (0, len(verts) - 1)
|
|
|
|
if not verts:
|
|
return []
|
|
|
|
edges_used = set()
|
|
edges_doubles = set()
|
|
# We need to check if any edges are used twice location based.
|
|
for ed in edges:
|
|
edkey = ed_key_mlen(verts[ed[0]], verts[ed[1]])
|
|
if edkey in edges_used:
|
|
edges_doubles.add(edkey)
|
|
else:
|
|
edges_used.add(edkey)
|
|
|
|
# Store a list of unconnected loop segments split by double edges.
|
|
# will join later
|
|
loop_segments = []
|
|
|
|
v_prev = verts[0]
|
|
context_loop = [v_prev]
|
|
loop_segments = [context_loop]
|
|
|
|
for v in verts:
|
|
if v != v_prev:
|
|
# Are we crossing an edge we removed?
|
|
if ed_key_mlen(v, v_prev) in edges_doubles:
|
|
context_loop = [v]
|
|
loop_segments.append(context_loop)
|
|
else:
|
|
if context_loop and context_loop[-1][1] == v[1]:
|
|
#raise "as"
|
|
pass
|
|
else:
|
|
context_loop.append(v)
|
|
|
|
v_prev = v
|
|
# Now join loop segments
|
|
|
|
def join_seg(s1, s2):
|
|
if s2[-1][1] == s1[0][1]:
|
|
s1, s2 = s2, s1
|
|
elif s1[-1][1] == s2[0][1]:
|
|
pass
|
|
else:
|
|
return False
|
|
|
|
# If were stuill here s1 and s2 are 2 segments in the same polyline
|
|
s1.pop() # remove the last vert from s1
|
|
s1.extend(s2) # add segment 2 to segment 1
|
|
|
|
if s1[0][1] == s1[-1][1]: # remove endpoints double
|
|
s1.pop()
|
|
|
|
s2[:] = [] # Empty this segment s2 so we dont use it again.
|
|
return True
|
|
|
|
joining_segments = True
|
|
while joining_segments:
|
|
joining_segments = False
|
|
segcount = len(loop_segments)
|
|
|
|
for j in range(segcount - 1, -1, -1): # reversed(range(segcount)):
|
|
seg_j = loop_segments[j]
|
|
if seg_j:
|
|
for k in range(j - 1, -1, -1): # reversed(range(j)):
|
|
if not seg_j:
|
|
break
|
|
seg_k = loop_segments[k]
|
|
|
|
if seg_k and join_seg(seg_j, seg_k):
|
|
joining_segments = True
|
|
|
|
loop_list = loop_segments
|
|
|
|
for verts in loop_list:
|
|
while verts and verts[0][1] == verts[-1][1]:
|
|
verts.pop()
|
|
|
|
loop_list = [verts for verts in loop_list if len(verts) > 2]
|
|
# DONE DEALING WITH LOOP FIXING
|
|
|
|
# vert mapping
|
|
vert_map = [None] * len(indices)
|
|
ii = 0
|
|
for verts in loop_list:
|
|
if len(verts) > 2:
|
|
for i, vert in enumerate(verts):
|
|
vert_map[i + ii] = vert[2]
|
|
ii += len(verts)
|
|
|
|
fill = tesselate_polygon([[v[0] for v in loop] for loop in loop_list])
|
|
#draw_loops(loop_list)
|
|
#raise 'done loop'
|
|
# map to original indices
|
|
fill = [[vert_map[i] for i in reversed(f)] for f in fill]
|
|
|
|
if not fill:
|
|
print('Warning Cannot scanfill, fallback on a triangle fan.')
|
|
fill = [[0, i - 1, i] for i in range(2, len(indices))]
|
|
else:
|
|
# Use real scanfill.
|
|
# See if its flipped the wrong way.
|
|
flip = None
|
|
for fi in fill:
|
|
if flip != None:
|
|
break
|
|
for i, vi in enumerate(fi):
|
|
if vi == 0 and fi[i - 1] == 1:
|
|
flip = False
|
|
break
|
|
elif vi == 1 and fi[i - 1] == 0:
|
|
flip = True
|
|
break
|
|
|
|
if not flip:
|
|
for i, fi in enumerate(fill):
|
|
fill[i] = tuple([ii for ii in reversed(fi)])
|
|
|
|
return fill
|