blender/intern/cycles/device/device_cpu.cpp
Sergey Sharybin 2330cadb0f Cycles: Cleanup, don't use strict C prototypes
Those are more like a legacy of language, which is not
needed in C++.
2018-11-09 12:04:41 +01:00

1082 lines
35 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
/* So ImathMath is included before our kernel_cpu_compat. */
#ifdef WITH_OSL
/* So no context pollution happens from indirectly included windows.h */
# include "util/util_windows.h"
# include <OSL/oslexec.h>
#endif
#include "device/device.h"
#include "device/device_denoising.h"
#include "device/device_intern.h"
#include "device/device_split_kernel.h"
#include "kernel/kernel.h"
#include "kernel/kernel_compat_cpu.h"
#include "kernel/kernel_types.h"
#include "kernel/split/kernel_split_data.h"
#include "kernel/kernel_globals.h"
#include "kernel/filter/filter.h"
#include "kernel/osl/osl_shader.h"
#include "kernel/osl/osl_globals.h"
#include "render/buffers.h"
#include "render/coverage.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_function.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_opengl.h"
#include "util/util_optimization.h"
#include "util/util_progress.h"
#include "util/util_system.h"
#include "util/util_thread.h"
CCL_NAMESPACE_BEGIN
class CPUDevice;
/* Has to be outside of the class to be shared across template instantiations. */
static const char *logged_architecture = "";
template<typename F>
class KernelFunctions {
public:
KernelFunctions()
{
kernel = (F)NULL;
}
KernelFunctions(F kernel_default,
F kernel_sse2,
F kernel_sse3,
F kernel_sse41,
F kernel_avx,
F kernel_avx2)
{
const char *architecture_name = "default";
kernel = kernel_default;
/* Silence potential warnings about unused variables
* when compiling without some architectures. */
(void)kernel_sse2;
(void)kernel_sse3;
(void)kernel_sse41;
(void)kernel_avx;
(void)kernel_avx2;
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(DebugFlags().cpu.has_avx2() && system_cpu_support_avx2()) {
architecture_name = "AVX2";
kernel = kernel_avx2;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(DebugFlags().cpu.has_avx() && system_cpu_support_avx()) {
architecture_name = "AVX";
kernel = kernel_avx;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(DebugFlags().cpu.has_sse41() && system_cpu_support_sse41()) {
architecture_name = "SSE4.1";
kernel = kernel_sse41;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(DebugFlags().cpu.has_sse3() && system_cpu_support_sse3()) {
architecture_name = "SSE3";
kernel = kernel_sse3;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(DebugFlags().cpu.has_sse2() && system_cpu_support_sse2()) {
architecture_name = "SSE2";
kernel = kernel_sse2;
}
#endif
if(strcmp(architecture_name, logged_architecture) != 0) {
VLOG(1) << "Will be using " << architecture_name << " kernels.";
logged_architecture = architecture_name;
}
}
inline F operator()() const {
assert(kernel);
return kernel;
}
protected:
F kernel;
};
class CPUSplitKernel : public DeviceSplitKernel {
CPUDevice *device;
public:
explicit CPUSplitKernel(CPUDevice *device);
virtual bool enqueue_split_kernel_data_init(const KernelDimensions& dim,
RenderTile& rtile,
int num_global_elements,
device_memory& kernel_globals,
device_memory& kernel_data_,
device_memory& split_data,
device_memory& ray_state,
device_memory& queue_index,
device_memory& use_queues_flag,
device_memory& work_pool_wgs);
virtual SplitKernelFunction* get_split_kernel_function(const string& kernel_name,
const DeviceRequestedFeatures&);
virtual int2 split_kernel_local_size();
virtual int2 split_kernel_global_size(device_memory& kg, device_memory& data, DeviceTask *task);
virtual uint64_t state_buffer_size(device_memory& kg, device_memory& data, size_t num_threads);
};
class CPUDevice : public Device
{
public:
TaskPool task_pool;
KernelGlobals kernel_globals;
device_vector<TextureInfo> texture_info;
bool need_texture_info;
#ifdef WITH_OSL
OSLGlobals osl_globals;
#endif
bool use_split_kernel;
DeviceRequestedFeatures requested_features;
KernelFunctions<void(*)(KernelGlobals *, float *, int, int, int, int, int)> path_trace_kernel;
KernelFunctions<void(*)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int)> convert_to_half_float_kernel;
KernelFunctions<void(*)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int)> convert_to_byte_kernel;
KernelFunctions<void(*)(KernelGlobals *, uint4 *, float4 *, int, int, int, int, int)> shader_kernel;
KernelFunctions<void(*)(int, TileInfo*, int, int, float*, float*, float*, float*, float*, int*, int, int)> filter_divide_shadow_kernel;
KernelFunctions<void(*)(int, TileInfo*, int, int, int, int, float*, float*, int*, int, int)> filter_get_feature_kernel;
KernelFunctions<void(*)(int, int, float*, float*, float*, float*, int*, int)> filter_detect_outliers_kernel;
KernelFunctions<void(*)(int, int, float*, float*, float*, float*, int*, int)> filter_combine_halves_kernel;
KernelFunctions<void(*)(int, int, float*, float*, float*, int*, int, int, float, float)> filter_nlm_calc_difference_kernel;
KernelFunctions<void(*)(float*, float*, int*, int, int)> filter_nlm_blur_kernel;
KernelFunctions<void(*)(float*, float*, int*, int, int)> filter_nlm_calc_weight_kernel;
KernelFunctions<void(*)(int, int, float*, float*, float*, float*, float*, int*, int, int)> filter_nlm_update_output_kernel;
KernelFunctions<void(*)(float*, float*, int*, int)> filter_nlm_normalize_kernel;
KernelFunctions<void(*)(float*, int, int, int, float*, int*, int*, int, int, float)> filter_construct_transform_kernel;
KernelFunctions<void(*)(int, int, float*, float*, float*, int*, float*, float3*, int*, int*, int, int, int)> filter_nlm_construct_gramian_kernel;
KernelFunctions<void(*)(int, int, int, float*, int*, float*, float3*, int*, int)> filter_finalize_kernel;
KernelFunctions<void(*)(KernelGlobals *, ccl_constant KernelData*, ccl_global void*, int, ccl_global char*,
int, int, int, int, int, int, int, int, ccl_global int*, int,
ccl_global char*, ccl_global unsigned int*, unsigned int, ccl_global float*)> data_init_kernel;
unordered_map<string, KernelFunctions<void(*)(KernelGlobals*, KernelData*)> > split_kernels;
#define KERNEL_FUNCTIONS(name) \
KERNEL_NAME_EVAL(cpu, name), \
KERNEL_NAME_EVAL(cpu_sse2, name), \
KERNEL_NAME_EVAL(cpu_sse3, name), \
KERNEL_NAME_EVAL(cpu_sse41, name), \
KERNEL_NAME_EVAL(cpu_avx, name), \
KERNEL_NAME_EVAL(cpu_avx2, name)
CPUDevice(DeviceInfo& info_, Stats &stats_, bool background_)
: Device(info_, stats_, background_),
texture_info(this, "__texture_info", MEM_TEXTURE),
#define REGISTER_KERNEL(name) name ## _kernel(KERNEL_FUNCTIONS(name))
REGISTER_KERNEL(path_trace),
REGISTER_KERNEL(convert_to_half_float),
REGISTER_KERNEL(convert_to_byte),
REGISTER_KERNEL(shader),
REGISTER_KERNEL(filter_divide_shadow),
REGISTER_KERNEL(filter_get_feature),
REGISTER_KERNEL(filter_detect_outliers),
REGISTER_KERNEL(filter_combine_halves),
REGISTER_KERNEL(filter_nlm_calc_difference),
REGISTER_KERNEL(filter_nlm_blur),
REGISTER_KERNEL(filter_nlm_calc_weight),
REGISTER_KERNEL(filter_nlm_update_output),
REGISTER_KERNEL(filter_nlm_normalize),
REGISTER_KERNEL(filter_construct_transform),
REGISTER_KERNEL(filter_nlm_construct_gramian),
REGISTER_KERNEL(filter_finalize),
REGISTER_KERNEL(data_init)
#undef REGISTER_KERNEL
{
if(info.cpu_threads == 0) {
info.cpu_threads = TaskScheduler::num_threads();
}
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
use_split_kernel = DebugFlags().cpu.split_kernel;
if(use_split_kernel) {
VLOG(1) << "Will be using split kernel.";
}
need_texture_info = false;
#define REGISTER_SPLIT_KERNEL(name) split_kernels[#name] = KernelFunctions<void(*)(KernelGlobals*, KernelData*)>(KERNEL_FUNCTIONS(name))
REGISTER_SPLIT_KERNEL(path_init);
REGISTER_SPLIT_KERNEL(scene_intersect);
REGISTER_SPLIT_KERNEL(lamp_emission);
REGISTER_SPLIT_KERNEL(do_volume);
REGISTER_SPLIT_KERNEL(queue_enqueue);
REGISTER_SPLIT_KERNEL(indirect_background);
REGISTER_SPLIT_KERNEL(shader_setup);
REGISTER_SPLIT_KERNEL(shader_sort);
REGISTER_SPLIT_KERNEL(shader_eval);
REGISTER_SPLIT_KERNEL(holdout_emission_blurring_pathtermination_ao);
REGISTER_SPLIT_KERNEL(subsurface_scatter);
REGISTER_SPLIT_KERNEL(direct_lighting);
REGISTER_SPLIT_KERNEL(shadow_blocked_ao);
REGISTER_SPLIT_KERNEL(shadow_blocked_dl);
REGISTER_SPLIT_KERNEL(enqueue_inactive);
REGISTER_SPLIT_KERNEL(next_iteration_setup);
REGISTER_SPLIT_KERNEL(indirect_subsurface);
REGISTER_SPLIT_KERNEL(buffer_update);
#undef REGISTER_SPLIT_KERNEL
#undef KERNEL_FUNCTIONS
}
~CPUDevice()
{
task_pool.stop();
texture_info.free();
}
virtual bool show_samples() const
{
return (info.cpu_threads == 1);
}
virtual BVHLayoutMask get_bvh_layout_mask() const {
BVHLayoutMask bvh_layout_mask = BVH_LAYOUT_BVH2;
if(DebugFlags().cpu.has_sse2() && system_cpu_support_sse2()) {
bvh_layout_mask |= BVH_LAYOUT_BVH4;
}
if(DebugFlags().cpu.has_avx2() && system_cpu_support_avx2()) {
bvh_layout_mask |= BVH_LAYOUT_BVH8;
}
#ifdef WITH_EMBREE
bvh_layout_mask |= BVH_LAYOUT_EMBREE;
#endif /* WITH_EMBREE */
return bvh_layout_mask;
}
void load_texture_info()
{
if(need_texture_info) {
texture_info.copy_to_device();
need_texture_info = false;
}
}
void mem_alloc(device_memory& mem)
{
if(mem.type == MEM_TEXTURE) {
assert(!"mem_alloc not supported for textures.");
}
else {
if(mem.name) {
VLOG(1) << "Buffer allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
}
if(mem.type == MEM_DEVICE_ONLY) {
assert(!mem.host_pointer);
size_t alignment = MIN_ALIGNMENT_CPU_DATA_TYPES;
void *data = util_aligned_malloc(mem.memory_size(), alignment);
mem.device_pointer = (device_ptr)data;
}
else {
mem.device_pointer = (device_ptr)mem.host_pointer;
}
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
}
void mem_copy_to(device_memory& mem)
{
if(mem.type == MEM_TEXTURE) {
tex_free(mem);
tex_alloc(mem);
}
else if(mem.type == MEM_PIXELS) {
assert(!"mem_copy_to not supported for pixels.");
}
else {
if(!mem.device_pointer) {
mem_alloc(mem);
}
/* copy is no-op */
}
}
void mem_copy_from(device_memory& /*mem*/,
int /*y*/, int /*w*/, int /*h*/,
int /*elem*/)
{
/* no-op */
}
void mem_zero(device_memory& mem)
{
if(!mem.device_pointer) {
mem_alloc(mem);
}
if(mem.device_pointer) {
memset((void*)mem.device_pointer, 0, mem.memory_size());
}
}
void mem_free(device_memory& mem)
{
if(mem.type == MEM_TEXTURE) {
tex_free(mem);
}
else if(mem.device_pointer) {
if(mem.type == MEM_DEVICE_ONLY) {
util_aligned_free((void*)mem.device_pointer);
}
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
virtual device_ptr mem_alloc_sub_ptr(device_memory& mem, int offset, int /*size*/)
{
return (device_ptr) (((char*) mem.device_pointer) + mem.memory_elements_size(offset));
}
void const_copy_to(const char *name, void *host, size_t size)
{
kernel_const_copy(&kernel_globals, name, host, size);
}
void tex_alloc(device_memory& mem)
{
VLOG(1) << "Texture allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
if(mem.interpolation == INTERPOLATION_NONE) {
/* Data texture. */
kernel_tex_copy(&kernel_globals,
mem.name,
mem.host_pointer,
mem.data_size);
}
else {
/* Image Texture. */
int flat_slot = 0;
if(string_startswith(mem.name, "__tex_image")) {
int pos = string(mem.name).rfind("_");
flat_slot = atoi(mem.name + pos + 1);
}
else {
assert(0);
}
if(flat_slot >= texture_info.size()) {
/* Allocate some slots in advance, to reduce amount
* of re-allocations. */
texture_info.resize(flat_slot + 128);
}
TextureInfo& info = texture_info[flat_slot];
info.data = (uint64_t)mem.host_pointer;
info.cl_buffer = 0;
info.interpolation = mem.interpolation;
info.extension = mem.extension;
info.width = mem.data_width;
info.height = mem.data_height;
info.depth = mem.data_depth;
need_texture_info = true;
}
mem.device_pointer = (device_ptr)mem.host_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void tex_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
need_texture_info = true;
}
}
void *osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::RENDER) {
thread_render(*task);
}
else if(task->type == DeviceTask::FILM_CONVERT)
thread_film_convert(*task);
else if(task->type == DeviceTask::SHADER)
thread_shader(*task);
}
class CPUDeviceTask : public DeviceTask {
public:
CPUDeviceTask(CPUDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&CPUDevice::thread_run, device, this);
}
};
bool denoising_non_local_means(device_ptr image_ptr, device_ptr guide_ptr, device_ptr variance_ptr, device_ptr out_ptr,
DenoisingTask *task)
{
int4 rect = task->rect;
int r = task->nlm_state.r;
int f = task->nlm_state.f;
float a = task->nlm_state.a;
float k_2 = task->nlm_state.k_2;
int w = align_up(rect.z-rect.x, 4);
int h = rect.w-rect.y;
float *temporary_mem = (float*) task->buffer.temporary_mem.device_pointer;
float *blurDifference = temporary_mem;
float *difference = temporary_mem + task->buffer.pass_stride;
float *weightAccum = temporary_mem + 2*task->buffer.pass_stride;
memset(weightAccum, 0, sizeof(float)*w*h);
memset((float*) out_ptr, 0, sizeof(float)*w*h);
for(int i = 0; i < (2*r+1)*(2*r+1); i++) {
int dy = i / (2*r+1) - r;
int dx = i % (2*r+1) - r;
int local_rect[4] = {max(0, -dx), max(0, -dy), rect.z-rect.x - max(0, dx), rect.w-rect.y - max(0, dy)};
filter_nlm_calc_difference_kernel()(dx, dy,
(float*) guide_ptr,
(float*) variance_ptr,
difference,
local_rect,
w, 0,
a, k_2);
filter_nlm_blur_kernel() (difference, blurDifference, local_rect, w, f);
filter_nlm_calc_weight_kernel()(blurDifference, difference, local_rect, w, f);
filter_nlm_blur_kernel() (difference, blurDifference, local_rect, w, f);
filter_nlm_update_output_kernel()(dx, dy,
blurDifference,
(float*) image_ptr,
difference,
(float*) out_ptr,
weightAccum,
local_rect,
w, f);
}
int local_rect[4] = {0, 0, rect.z-rect.x, rect.w-rect.y};
filter_nlm_normalize_kernel()((float*) out_ptr, weightAccum, local_rect, w);
return true;
}
bool denoising_construct_transform(DenoisingTask *task)
{
for(int y = 0; y < task->filter_area.w; y++) {
for(int x = 0; x < task->filter_area.z; x++) {
filter_construct_transform_kernel()((float*) task->buffer.mem.device_pointer,
x + task->filter_area.x,
y + task->filter_area.y,
y*task->filter_area.z + x,
(float*) task->storage.transform.device_pointer,
(int*) task->storage.rank.device_pointer,
&task->rect.x,
task->buffer.pass_stride,
task->radius,
task->pca_threshold);
}
}
return true;
}
bool denoising_reconstruct(device_ptr color_ptr,
device_ptr color_variance_ptr,
device_ptr output_ptr,
DenoisingTask *task)
{
mem_zero(task->storage.XtWX);
mem_zero(task->storage.XtWY);
float *temporary_mem = (float*) task->buffer.temporary_mem.device_pointer;
float *difference = temporary_mem;
float *blurDifference = temporary_mem + task->buffer.pass_stride;
int r = task->radius;
for(int i = 0; i < (2*r+1)*(2*r+1); i++) {
int dy = i / (2*r+1) - r;
int dx = i % (2*r+1) - r;
int local_rect[4] = {max(0, -dx), max(0, -dy),
task->reconstruction_state.source_w - max(0, dx),
task->reconstruction_state.source_h - max(0, dy)};
filter_nlm_calc_difference_kernel()(dx, dy,
(float*) color_ptr,
(float*) color_variance_ptr,
difference,
local_rect,
task->buffer.stride,
task->buffer.pass_stride,
1.0f,
task->nlm_k_2);
filter_nlm_blur_kernel()(difference, blurDifference, local_rect, task->buffer.stride, 4);
filter_nlm_calc_weight_kernel()(blurDifference, difference, local_rect, task->buffer.stride, 4);
filter_nlm_blur_kernel()(difference, blurDifference, local_rect, task->buffer.stride, 4);
filter_nlm_construct_gramian_kernel()(dx, dy,
blurDifference,
(float*) task->buffer.mem.device_pointer,
(float*) task->storage.transform.device_pointer,
(int*) task->storage.rank.device_pointer,
(float*) task->storage.XtWX.device_pointer,
(float3*) task->storage.XtWY.device_pointer,
local_rect,
&task->reconstruction_state.filter_window.x,
task->buffer.stride,
4,
task->buffer.pass_stride);
}
for(int y = 0; y < task->filter_area.w; y++) {
for(int x = 0; x < task->filter_area.z; x++) {
filter_finalize_kernel()(x,
y,
y*task->filter_area.z + x,
(float*) output_ptr,
(int*) task->storage.rank.device_pointer,
(float*) task->storage.XtWX.device_pointer,
(float3*) task->storage.XtWY.device_pointer,
&task->reconstruction_state.buffer_params.x,
task->render_buffer.samples);
}
}
return true;
}
bool denoising_combine_halves(device_ptr a_ptr, device_ptr b_ptr,
device_ptr mean_ptr, device_ptr variance_ptr,
int r, int4 rect, DenoisingTask * /*task*/)
{
for(int y = rect.y; y < rect.w; y++) {
for(int x = rect.x; x < rect.z; x++) {
filter_combine_halves_kernel()(x, y,
(float*) mean_ptr,
(float*) variance_ptr,
(float*) a_ptr,
(float*) b_ptr,
&rect.x,
r);
}
}
return true;
}
bool denoising_divide_shadow(device_ptr a_ptr, device_ptr b_ptr,
device_ptr sample_variance_ptr, device_ptr sv_variance_ptr,
device_ptr buffer_variance_ptr, DenoisingTask *task)
{
for(int y = task->rect.y; y < task->rect.w; y++) {
for(int x = task->rect.x; x < task->rect.z; x++) {
filter_divide_shadow_kernel()(task->render_buffer.samples,
task->tile_info,
x, y,
(float*) a_ptr,
(float*) b_ptr,
(float*) sample_variance_ptr,
(float*) sv_variance_ptr,
(float*) buffer_variance_ptr,
&task->rect.x,
task->render_buffer.pass_stride,
task->render_buffer.offset);
}
}
return true;
}
bool denoising_get_feature(int mean_offset,
int variance_offset,
device_ptr mean_ptr,
device_ptr variance_ptr,
DenoisingTask *task)
{
for(int y = task->rect.y; y < task->rect.w; y++) {
for(int x = task->rect.x; x < task->rect.z; x++) {
filter_get_feature_kernel()(task->render_buffer.samples,
task->tile_info,
mean_offset,
variance_offset,
x, y,
(float*) mean_ptr,
(float*) variance_ptr,
&task->rect.x,
task->render_buffer.pass_stride,
task->render_buffer.offset);
}
}
return true;
}
bool denoising_detect_outliers(device_ptr image_ptr,
device_ptr variance_ptr,
device_ptr depth_ptr,
device_ptr output_ptr,
DenoisingTask *task)
{
for(int y = task->rect.y; y < task->rect.w; y++) {
for(int x = task->rect.x; x < task->rect.z; x++) {
filter_detect_outliers_kernel()(x, y,
(float*) image_ptr,
(float*) variance_ptr,
(float*) depth_ptr,
(float*) output_ptr,
&task->rect.x,
task->buffer.pass_stride);
}
}
return true;
}
void path_trace(DeviceTask &task, RenderTile &tile, KernelGlobals *kg)
{
const bool use_coverage = kernel_data.film.cryptomatte_passes & CRYPT_ACCURATE;
scoped_timer timer(&tile.buffers->render_time);
Coverage coverage(kg, tile);
if(use_coverage) {
coverage.init_path_trace();
}
float *render_buffer = (float*)tile.buffer;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
for(int sample = start_sample; sample < end_sample; sample++) {
if(task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
if(use_coverage) {
coverage.init_pixel(x, y);
}
path_trace_kernel()(kg, render_buffer,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(&tile, tile.w*tile.h);
}
if(use_coverage) {
coverage.finalize();
}
}
void denoise(DenoisingTask& denoising, RenderTile &tile)
{
tile.sample = tile.start_sample + tile.num_samples;
denoising.functions.construct_transform = function_bind(&CPUDevice::denoising_construct_transform, this, &denoising);
denoising.functions.reconstruct = function_bind(&CPUDevice::denoising_reconstruct, this, _1, _2, _3, &denoising);
denoising.functions.divide_shadow = function_bind(&CPUDevice::denoising_divide_shadow, this, _1, _2, _3, _4, _5, &denoising);
denoising.functions.non_local_means = function_bind(&CPUDevice::denoising_non_local_means, this, _1, _2, _3, _4, &denoising);
denoising.functions.combine_halves = function_bind(&CPUDevice::denoising_combine_halves, this, _1, _2, _3, _4, _5, _6, &denoising);
denoising.functions.get_feature = function_bind(&CPUDevice::denoising_get_feature, this, _1, _2, _3, _4, &denoising);
denoising.functions.detect_outliers = function_bind(&CPUDevice::denoising_detect_outliers, this, _1, _2, _3, _4, &denoising);
denoising.filter_area = make_int4(tile.x, tile.y, tile.w, tile.h);
denoising.render_buffer.samples = tile.sample;
denoising.buffer.gpu_temporary_mem = false;
denoising.run_denoising(&tile);
}
void thread_render(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
/* allocate buffer for kernel globals */
device_only_memory<KernelGlobals> kgbuffer(this, "kernel_globals");
kgbuffer.alloc_to_device(1);
KernelGlobals *kg = new ((void*) kgbuffer.device_pointer) KernelGlobals(thread_kernel_globals_init());
CPUSplitKernel *split_kernel = NULL;
if(use_split_kernel) {
split_kernel = new CPUSplitKernel(this);
if(!split_kernel->load_kernels(requested_features)) {
thread_kernel_globals_free((KernelGlobals*)kgbuffer.device_pointer);
kgbuffer.free();
delete split_kernel;
return;
}
}
RenderTile tile;
DenoisingTask denoising(this, task);
while(task.acquire_tile(this, tile)) {
if(tile.task == RenderTile::PATH_TRACE) {
if(use_split_kernel) {
device_only_memory<uchar> void_buffer(this, "void_buffer");
split_kernel->path_trace(&task, tile, kgbuffer, void_buffer);
}
else {
path_trace(task, tile, kg);
}
}
else if(tile.task == RenderTile::DENOISE) {
denoise(denoising, tile);
task.update_progress(&tile, tile.w*tile.h);
}
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
thread_kernel_globals_free((KernelGlobals*)kgbuffer.device_pointer);
kg->~KernelGlobals();
kgbuffer.free();
delete split_kernel;
}
void thread_film_convert(DeviceTask& task)
{
float sample_scale = 1.0f/(task.sample + 1);
if(task.rgba_half) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_half_float_kernel()(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_byte_kernel()(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
}
void thread_shader(DeviceTask& task)
{
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
for(int sample = 0; sample < task.num_samples; sample++) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++)
shader_kernel()(&kg,
(uint4*)task.shader_input,
(float4*)task.shader_output,
task.shader_eval_type,
task.shader_filter,
x,
task.offset,
sample);
if(task.get_cancel() || task_pool.canceled())
break;
task.update_progress(NULL);
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
int get_split_task_count(DeviceTask& task)
{
if(task.type == DeviceTask::SHADER)
return task.get_subtask_count(info.cpu_threads, 256);
else
return task.get_subtask_count(info.cpu_threads);
}
void task_add(DeviceTask& task)
{
/* Load texture info. */
load_texture_info();
/* split task into smaller ones */
list<DeviceTask> tasks;
if(task.type == DeviceTask::SHADER)
task.split(tasks, info.cpu_threads, 256);
else
task.split(tasks, info.cpu_threads);
foreach(DeviceTask& task, tasks)
task_pool.push(new CPUDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
protected:
inline KernelGlobals thread_kernel_globals_init()
{
KernelGlobals kg = kernel_globals;
kg.transparent_shadow_intersections = NULL;
const int decoupled_count = sizeof(kg.decoupled_volume_steps) /
sizeof(*kg.decoupled_volume_steps);
for(int i = 0; i < decoupled_count; ++i) {
kg.decoupled_volume_steps[i] = NULL;
}
kg.decoupled_volume_steps_index = 0;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
return kg;
}
inline void thread_kernel_globals_free(KernelGlobals *kg)
{
if(kg == NULL) {
return;
}
if(kg->transparent_shadow_intersections != NULL) {
free(kg->transparent_shadow_intersections);
}
const int decoupled_count = sizeof(kg->decoupled_volume_steps) /
sizeof(*kg->decoupled_volume_steps);
for(int i = 0; i < decoupled_count; ++i) {
if(kg->decoupled_volume_steps[i] != NULL) {
free(kg->decoupled_volume_steps[i]);
}
}
#ifdef WITH_OSL
OSLShader::thread_free(kg);
#endif
}
virtual bool load_kernels(const DeviceRequestedFeatures& requested_features_) {
requested_features = requested_features_;
return true;
}
};
/* split kernel */
class CPUSplitKernelFunction : public SplitKernelFunction {
public:
CPUDevice* device;
void (*func)(KernelGlobals *kg, KernelData *data);
CPUSplitKernelFunction(CPUDevice* device) : device(device), func(NULL) {}
~CPUSplitKernelFunction() {}
virtual bool enqueue(const KernelDimensions& dim, device_memory& kernel_globals, device_memory& data)
{
if(!func) {
return false;
}
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
kg->global_size = make_int2(dim.global_size[0], dim.global_size[1]);
for(int y = 0; y < dim.global_size[1]; y++) {
for(int x = 0; x < dim.global_size[0]; x++) {
kg->global_id = make_int2(x, y);
func(kg, (KernelData*)data.device_pointer);
}
}
return true;
}
};
CPUSplitKernel::CPUSplitKernel(CPUDevice *device) : DeviceSplitKernel(device), device(device)
{
}
bool CPUSplitKernel::enqueue_split_kernel_data_init(const KernelDimensions& dim,
RenderTile& rtile,
int num_global_elements,
device_memory& kernel_globals,
device_memory& data,
device_memory& split_data,
device_memory& ray_state,
device_memory& queue_index,
device_memory& use_queues_flags,
device_memory& work_pool_wgs)
{
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
kg->global_size = make_int2(dim.global_size[0], dim.global_size[1]);
for(int y = 0; y < dim.global_size[1]; y++) {
for(int x = 0; x < dim.global_size[0]; x++) {
kg->global_id = make_int2(x, y);
device->data_init_kernel()((KernelGlobals*)kernel_globals.device_pointer,
(KernelData*)data.device_pointer,
(void*)split_data.device_pointer,
num_global_elements,
(char*)ray_state.device_pointer,
rtile.start_sample,
rtile.start_sample + rtile.num_samples,
rtile.x,
rtile.y,
rtile.w,
rtile.h,
rtile.offset,
rtile.stride,
(int*)queue_index.device_pointer,
dim.global_size[0] * dim.global_size[1],
(char*)use_queues_flags.device_pointer,
(uint*)work_pool_wgs.device_pointer,
rtile.num_samples,
(float*)rtile.buffer);
}
}
return true;
}
SplitKernelFunction* CPUSplitKernel::get_split_kernel_function(const string& kernel_name,
const DeviceRequestedFeatures&)
{
CPUSplitKernelFunction *kernel = new CPUSplitKernelFunction(device);
kernel->func = device->split_kernels[kernel_name]();
if(!kernel->func) {
delete kernel;
return NULL;
}
return kernel;
}
int2 CPUSplitKernel::split_kernel_local_size()
{
return make_int2(1, 1);
}
int2 CPUSplitKernel::split_kernel_global_size(device_memory& /*kg*/, device_memory& /*data*/, DeviceTask * /*task*/) {
return make_int2(1, 1);
}
uint64_t CPUSplitKernel::state_buffer_size(device_memory& kernel_globals, device_memory& /*data*/, size_t num_threads) {
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
return split_data_buffer_size(kg, num_threads);
}
Device *device_cpu_create(DeviceInfo& info, Stats &stats, bool background)
{
return new CPUDevice(info, stats, background);
}
void device_cpu_info(vector<DeviceInfo>& devices)
{
DeviceInfo info;
info.type = DEVICE_CPU;
info.description = system_cpu_brand_string();
info.id = "CPU";
info.num = 0;
info.advanced_shading = true;
info.has_volume_decoupled = true;
info.has_osl = true;
info.has_half_images = true;
devices.insert(devices.begin(), info);
}
string device_cpu_capabilities()
{
string capabilities = "";
capabilities += system_cpu_support_sse2() ? "SSE2 " : "";
capabilities += system_cpu_support_sse3() ? "SSE3 " : "";
capabilities += system_cpu_support_sse41() ? "SSE41 " : "";
capabilities += system_cpu_support_avx() ? "AVX " : "";
capabilities += system_cpu_support_avx2() ? "AVX2" : "";
if(capabilities[capabilities.size() - 1] == ' ')
capabilities.resize(capabilities.size() - 1);
return capabilities;
}
CCL_NAMESPACE_END