blender/source/gameengine/Ketsji/KX_ObstacleSimulation.cpp

869 lines
23 KiB
C++

/**
* Simulation for obstacle avoidance behavior
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "KX_ObstacleSimulation.h"
#include "KX_NavMeshObject.h"
#include "KX_PythonInit.h"
#include "DNA_object_types.h"
#include "BLI_math.h"
namespace
{
inline float perp(const MT_Vector2& a, const MT_Vector2& b) { return a.x()*b.y() - a.y()*b.x(); }
inline float sqr(float x) { return x*x; }
inline float lerp(float a, float b, float t) { return a + (b-a)*t; }
inline float clamp(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); }
inline float vdistsqr(const float* a, const float* b) { return sqr(b[0]-a[0]) + sqr(b[1]-a[1]); }
inline float vdist(const float* a, const float* b) { return sqrtf(vdistsqr(a,b)); }
inline void vcpy(float* a, const float* b) { a[0]=b[0]; a[1]=b[1]; }
inline float vdot(const float* a, const float* b) { return a[0]*b[0] + a[1]*b[1]; }
inline float vperp(const float* a, const float* b) { return a[0]*b[1] - a[1]*b[0]; }
inline void vsub(float* v, const float* a, const float* b) { v[0] = a[0]-b[0]; v[1] = a[1]-b[1]; }
inline void vadd(float* v, const float* a, const float* b) { v[0] = a[0]+b[0]; v[1] = a[1]+b[1]; }
inline void vscale(float* v, const float* a, const float s) { v[0] = a[0]*s; v[1] = a[1]*s; }
inline void vset(float* v, float x, float y) { v[0]=x; v[1]=y; }
inline float vlensqr(const float* v) { return vdot(v,v); }
inline float vlen(const float* v) { return sqrtf(vlensqr(v)); }
inline void vlerp(float* v, const float* a, const float* b, float t) { v[0] = lerp(a[0], b[0], t); v[1] = lerp(a[1], b[1], t); }
inline void vmad(float* v, const float* a, const float* b, float s) { v[0] = a[0] + b[0]*s; v[1] = a[1] + b[1]*s; }
inline void vnorm(float* v)
{
float d = vlen(v);
if (d > 0.0001f)
{
d = 1.0f/d;
v[0] *= d;
v[1] *= d;
}
}
}
inline float triarea(const float* a, const float* b, const float* c)
{
return (b[0]*a[1] - a[0]*b[1]) + (c[0]*b[1] - b[0]*c[1]) + (a[0]*c[1] - c[0]*a[1]);
}
static void closestPtPtSeg(const float* pt,
const float* sp, const float* sq,
float& t)
{
float dir[2],diff[3];
vsub(dir,sq,sp);
vsub(diff,pt,sp);
t = vdot(diff,dir);
if (t <= 0.0f) { t = 0; return; }
float d = vdot(dir,dir);
if (t >= d) { t = 1; return; }
t /= d;
}
static float distPtSegSqr(const float* pt, const float* sp, const float* sq)
{
float t;
closestPtPtSeg(pt, sp,sq, t);
float np[2];
vlerp(np, sp,sq, t);
return vdistsqr(pt,np);
}
static int sweepCircleCircle(const MT_Vector3& pos0, const MT_Scalar r0, const MT_Vector2& v,
const MT_Vector3& pos1, const MT_Scalar r1,
float& tmin, float& tmax)
{
static const float EPS = 0.0001f;
MT_Vector2 c0(pos0.x(), pos0.y());
MT_Vector2 c1(pos1.x(), pos1.y());
MT_Vector2 s = c1 - c0;
MT_Scalar r = r0+r1;
float c = s.length2() - r*r;
float a = v.length2();
if (a < EPS) return 0; // not moving
// Overlap, calc time to exit.
float b = MT_dot(v,s);
float d = b*b - a*c;
if (d < 0.0f) return 0; // no intersection.
tmin = (b - sqrtf(d)) / a;
tmax = (b + sqrtf(d)) / a;
return 1;
}
static int sweepCircleSegment(const MT_Vector3& pos0, const MT_Scalar r0, const MT_Vector2& v,
const MT_Vector3& pa, const MT_Vector3& pb, const MT_Scalar sr,
float& tmin, float &tmax)
{
// equation parameters
MT_Vector2 c0(pos0.x(), pos0.y());
MT_Vector2 sa(pa.x(), pa.y());
MT_Vector2 sb(pb.x(), pb.y());
MT_Vector2 L = sb-sa;
MT_Vector2 H = c0-sa;
MT_Scalar radius = r0+sr;
float l2 = L.length2();
float r2 = radius * radius;
float dl = perp(v, L);
float hl = perp(H, L);
float a = dl * dl;
float b = 2.0f * hl * dl;
float c = hl * hl - (r2 * l2);
float d = (b*b) - (4.0f * a * c);
// infinite line missed by infinite ray.
if (d < 0.0f)
return 0;
d = sqrtf(d);
tmin = (-b - d) / (2.0f * a);
tmax = (-b + d) / (2.0f * a);
// line missed by ray range.
/* if (tmax < 0.0f || tmin > 1.0f)
return 0;*/
// find what part of the ray was collided.
MT_Vector2 Pedge;
Pedge = c0+v*tmin;
H = Pedge - sa;
float e0 = MT_dot(H, L) / l2;
Pedge = c0 + v*tmax;
H = Pedge - sa;
float e1 = MT_dot(H, L) / l2;
if (e0 < 0.0f || e1 < 0.0f)
{
float ctmin, ctmax;
if (sweepCircleCircle(pos0, r0, v, pa, sr, ctmin, ctmax))
{
if (e0 < 0.0f && ctmin > tmin)
tmin = ctmin;
if (e1 < 0.0f && ctmax < tmax)
tmax = ctmax;
}
else
{
return 0;
}
}
if (e0 > 1.0f || e1 > 1.0f)
{
float ctmin, ctmax;
if (sweepCircleCircle(pos0, r0, v, pb, sr, ctmin, ctmax))
{
if (e0 > 1.0f && ctmin > tmin)
tmin = ctmin;
if (e1 > 1.0f && ctmax < tmax)
tmax = ctmax;
}
else
{
return 0;
}
}
return 1;
}
static bool inBetweenAngle(float a, float amin, float amax, float& t)
{
if (amax < amin) amax += (float)M_PI*2;
if (a < amin-(float)M_PI) a += (float)M_PI*2;
if (a > amin+(float)M_PI) a -= (float)M_PI*2;
if (a >= amin && a < amax)
{
t = (a-amin) / (amax-amin);
return true;
}
return false;
}
static float interpolateToi(float a, const float* dir, const float* toi, const int ntoi)
{
for (int i = 0; i < ntoi; ++i)
{
int next = (i+1) % ntoi;
float t;
if (inBetweenAngle(a, dir[i], dir[next], t))
{
return lerp(toi[i], toi[next], t);
}
}
return 0;
}
KX_ObstacleSimulation::KX_ObstacleSimulation(MT_Scalar levelHeight, bool enableVisualization)
: m_levelHeight(levelHeight)
, m_enableVisualization(enableVisualization)
{
}
KX_ObstacleSimulation::~KX_ObstacleSimulation()
{
for (size_t i=0; i<m_obstacles.size(); i++)
{
KX_Obstacle* obs = m_obstacles[i];
delete obs;
}
m_obstacles.clear();
}
KX_Obstacle* KX_ObstacleSimulation::CreateObstacle(KX_GameObject* gameobj)
{
KX_Obstacle* obstacle = new KX_Obstacle();
obstacle->m_gameObj = gameobj;
vset(obstacle->vel, 0,0);
vset(obstacle->pvel, 0,0);
vset(obstacle->dvel, 0,0);
vset(obstacle->nvel, 0,0);
for (int i = 0; i < VEL_HIST_SIZE; ++i)
vset(&obstacle->hvel[i*2], 0,0);
obstacle->hhead = 0;
gameobj->RegisterObstacle(this);
m_obstacles.push_back(obstacle);
return obstacle;
}
void KX_ObstacleSimulation::AddObstacleForObj(KX_GameObject* gameobj)
{
KX_Obstacle* obstacle = CreateObstacle(gameobj);
struct Object* blenderobject = gameobj->GetBlenderObject();
obstacle->m_type = KX_OBSTACLE_OBJ;
obstacle->m_shape = KX_OBSTACLE_CIRCLE;
obstacle->m_rad = blenderobject->obstacleRad;
}
void KX_ObstacleSimulation::AddObstaclesForNavMesh(KX_NavMeshObject* navmeshobj)
{
dtStatNavMesh* navmesh = navmeshobj->GetNavMesh();
if (navmesh)
{
int npoly = navmesh->getPolyCount();
for (int pi=0; pi<npoly; pi++)
{
const dtStatPoly* poly = navmesh->getPoly(pi);
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
{
if (poly->n[j]) continue;
const float* vj = navmesh->getVertex(poly->v[j]);
const float* vi = navmesh->getVertex(poly->v[i]);
KX_Obstacle* obstacle = CreateObstacle(navmeshobj);
obstacle->m_type = KX_OBSTACLE_NAV_MESH;
obstacle->m_shape = KX_OBSTACLE_SEGMENT;
obstacle->m_pos = MT_Point3(vj[0], vj[2], vj[1]);
obstacle->m_pos2 = MT_Point3(vi[0], vi[2], vi[1]);
obstacle->m_rad = 0;
}
}
}
}
void KX_ObstacleSimulation::DestroyObstacleForObj(KX_GameObject* gameobj)
{
for (size_t i=0; i<m_obstacles.size(); )
{
if (m_obstacles[i]->m_gameObj == gameobj)
{
KX_Obstacle* obstacle = m_obstacles[i];
obstacle->m_gameObj->UnregisterObstacle();
m_obstacles[i] = m_obstacles.back();
m_obstacles.pop_back();
delete obstacle;
}
else
i++;
}
}
void KX_ObstacleSimulation::UpdateObstacles()
{
for (size_t i=0; i<m_obstacles.size(); i++)
{
if (m_obstacles[i]->m_type==KX_OBSTACLE_NAV_MESH || m_obstacles[i]->m_shape==KX_OBSTACLE_SEGMENT)
continue;
KX_Obstacle* obs = m_obstacles[i];
obs->m_pos = obs->m_gameObj->NodeGetWorldPosition();
obs->vel[0] = obs->m_gameObj->GetLinearVelocity().x();
obs->vel[1] = obs->m_gameObj->GetLinearVelocity().y();
// Update velocity history and calculate perceived (average) velocity.
vcpy(&obs->hvel[obs->hhead*2], obs->vel);
obs->hhead = (obs->hhead+1) % VEL_HIST_SIZE;
vset(obs->pvel,0,0);
for (int j = 0; j < VEL_HIST_SIZE; ++j)
vadd(obs->pvel, obs->pvel, &obs->hvel[j*2]);
vscale(obs->pvel, obs->pvel, 1.0f/VEL_HIST_SIZE);
}
}
KX_Obstacle* KX_ObstacleSimulation::GetObstacle(KX_GameObject* gameobj)
{
for (size_t i=0; i<m_obstacles.size(); i++)
{
if (m_obstacles[i]->m_gameObj == gameobj)
return m_obstacles[i];
}
return NULL;
}
void KX_ObstacleSimulation::AdjustObstacleVelocity(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
MT_Vector3& velocity, MT_Scalar maxDeltaSpeed,MT_Scalar maxDeltaAngle)
{
}
void KX_ObstacleSimulation::DrawObstacles()
{
if (!m_enableVisualization)
return;
static const MT_Vector3 bluecolor(0,0,1);
static const MT_Vector3 normal(0.,0.,1.);
static const int SECTORS_NUM = 32;
for (size_t i=0; i<m_obstacles.size(); i++)
{
if (m_obstacles[i]->m_shape==KX_OBSTACLE_SEGMENT)
{
MT_Point3 p1 = m_obstacles[i]->m_pos;
MT_Point3 p2 = m_obstacles[i]->m_pos2;
//apply world transform
if (m_obstacles[i]->m_type == KX_OBSTACLE_NAV_MESH)
{
KX_NavMeshObject* navmeshobj = static_cast<KX_NavMeshObject*>(m_obstacles[i]->m_gameObj);
p1 = navmeshobj->TransformToWorldCoords(p1);
p2 = navmeshobj->TransformToWorldCoords(p2);
}
KX_RasterizerDrawDebugLine(p1, p2, bluecolor);
}
else if (m_obstacles[i]->m_shape==KX_OBSTACLE_CIRCLE)
{
KX_RasterizerDrawDebugCircle(m_obstacles[i]->m_pos, m_obstacles[i]->m_rad, bluecolor,
normal, SECTORS_NUM);
}
}
}
static MT_Point3 nearestPointToObstacle(MT_Point3& pos ,KX_Obstacle* obstacle)
{
switch (obstacle->m_shape)
{
case KX_OBSTACLE_SEGMENT :
{
MT_Vector3 ab = obstacle->m_pos2 - obstacle->m_pos;
if (!ab.fuzzyZero())
{
MT_Vector3 abdir = ab.normalized();
MT_Vector3 v = pos - obstacle->m_pos;
MT_Scalar proj = abdir.dot(v);
CLAMP(proj, 0, ab.length());
MT_Point3 res = obstacle->m_pos + abdir*proj;
return res;
}
}
case KX_OBSTACLE_CIRCLE :
default:
return obstacle->m_pos;
}
}
static bool filterObstacle(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj, KX_Obstacle* otherObst,
float levelHeight)
{
//filter obstacles by type
if ( (otherObst == activeObst) ||
(otherObst->m_type==KX_OBSTACLE_NAV_MESH && otherObst->m_gameObj!=activeNavMeshObj) )
return false;
//filter obstacles by position
MT_Point3 p = nearestPointToObstacle(activeObst->m_pos, otherObst);
if ( fabs(activeObst->m_pos.z() - p.z()) > levelHeight)
return false;
return true;
}
///////////*********TOI_rays**********/////////////////
KX_ObstacleSimulationTOI::KX_ObstacleSimulationTOI(MT_Scalar levelHeight, bool enableVisualization)
: KX_ObstacleSimulation(levelHeight, enableVisualization),
m_maxSamples(32),
m_minToi(0.0f),
m_maxToi(0.0f),
m_velWeight(1.0f),
m_curVelWeight(1.0f),
m_toiWeight(1.0f),
m_collisionWeight(1.0f)
{
}
void KX_ObstacleSimulationTOI::AdjustObstacleVelocity(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
MT_Vector3& velocity, MT_Scalar maxDeltaSpeed, MT_Scalar maxDeltaAngle)
{
int nobs = m_obstacles.size();
int obstidx = std::find(m_obstacles.begin(), m_obstacles.end(), activeObst) - m_obstacles.begin();
if (obstidx == nobs)
return;
vset(activeObst->dvel, velocity.x(), velocity.y());
//apply RVO
sampleRVO(activeObst, activeNavMeshObj, maxDeltaAngle);
// Fake dynamic constraint.
float dv[2];
float vel[2];
vsub(dv, activeObst->nvel, activeObst->vel);
float ds = vlen(dv);
if (ds > maxDeltaSpeed || ds<-maxDeltaSpeed)
vscale(dv, dv, fabs(maxDeltaSpeed/ds));
vadd(vel, activeObst->vel, dv);
velocity.x() = vel[0];
velocity.y() = vel[1];
}
///////////*********TOI_rays**********/////////////////
static const int AVOID_MAX_STEPS = 128;
struct TOICircle
{
TOICircle() : n(0), minToi(0), maxToi(1) {}
float toi[AVOID_MAX_STEPS]; // Time of impact (seconds)
float toie[AVOID_MAX_STEPS]; // Time of exit (seconds)
float dir[AVOID_MAX_STEPS]; // Direction (radians)
int n; // Number of samples
float minToi, maxToi; // Min/max TOI (seconds)
};
KX_ObstacleSimulationTOI_rays::KX_ObstacleSimulationTOI_rays(MT_Scalar levelHeight, bool enableVisualization):
KX_ObstacleSimulationTOI(levelHeight, enableVisualization)
{
m_maxSamples = 32;
m_minToi = 0.5f;
m_maxToi = 1.2f;
m_velWeight = 4.0f;
m_toiWeight = 1.0f;
m_collisionWeight = 100.0f;
}
void KX_ObstacleSimulationTOI_rays::sampleRVO(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
const float maxDeltaAngle)
{
MT_Vector2 vel(activeObst->dvel[0], activeObst->dvel[1]);
float vmax = (float) vel.length();
float odir = (float) atan2(vel.y(), vel.x());
MT_Vector2 ddir = vel;
ddir.normalize();
float bestScore = FLT_MAX;
float bestDir = odir;
float bestToi = 0;
TOICircle tc;
tc.n = m_maxSamples;
tc.minToi = m_minToi;
tc.maxToi = m_maxToi;
const int iforw = m_maxSamples/2;
const float aoff = (float)iforw / (float)m_maxSamples;
size_t nobs = m_obstacles.size();
for (int iter = 0; iter < m_maxSamples; ++iter)
{
// Calculate sample velocity
const float ndir = ((float)iter/(float)m_maxSamples) - aoff;
const float dir = odir+ndir*M_PI*2;
MT_Vector2 svel;
svel.x() = cosf(dir) * vmax;
svel.y() = sinf(dir) * vmax;
// Find min time of impact and exit amongst all obstacles.
float tmin = m_maxToi;
float tmine = 0;
for (int i = 0; i < nobs; ++i)
{
KX_Obstacle* ob = m_obstacles[i];
bool res = filterObstacle(activeObst, activeNavMeshObj, ob, m_levelHeight);
if (!res)
continue;
float htmin,htmax;
if (ob->m_shape == KX_OBSTACLE_CIRCLE)
{
MT_Vector2 vab;
if (vlen(ob->vel) < 0.01f*0.01f)
{
// Stationary, use VO
vab = svel;
}
else
{
// Moving, use RVO
vab = 2*svel - vel - ob->vel;
}
if (!sweepCircleCircle(activeObst->m_pos, activeObst->m_rad,
vab, ob->m_pos, ob->m_rad, htmin, htmax))
continue;
}
else if (ob->m_shape == KX_OBSTACLE_SEGMENT)
{
MT_Point3 p1 = ob->m_pos;
MT_Point3 p2 = ob->m_pos2;
//apply world transform
if (ob->m_type == KX_OBSTACLE_NAV_MESH)
{
KX_NavMeshObject* navmeshobj = static_cast<KX_NavMeshObject*>(ob->m_gameObj);
p1 = navmeshobj->TransformToWorldCoords(p1);
p2 = navmeshobj->TransformToWorldCoords(p2);
}
if (!sweepCircleSegment(activeObst->m_pos, activeObst->m_rad, svel,
p1, p2, ob->m_rad, htmin, htmax))
continue;
}
if (htmin > 0.0f)
{
// The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
if (htmin < tmin)
tmin = htmin;
}
else if (htmax > 0.0f)
{
// The agent overlaps the obstacle, keep track of first safe exit.
if (htmax > tmine)
tmine = htmax;
}
}
// Calculate sample penalties and final score.
const float apen = m_velWeight * fabsf(ndir);
const float tpen = m_toiWeight * (1.0f/(0.0001f+tmin/m_maxToi));
const float cpen = m_collisionWeight * (tmine/m_minToi)*(tmine/m_minToi);
const float score = apen + tpen + cpen;
// Update best score.
if (score < bestScore)
{
bestDir = dir;
bestToi = tmin;
bestScore = score;
}
tc.dir[iter] = dir;
tc.toi[iter] = tmin;
tc.toie[iter] = tmine;
}
if (vlen(activeObst->vel) > 0.1)
{
// Constrain max turn rate.
float cura = atan2(activeObst->vel[1],activeObst->vel[0]);
float da = bestDir - cura;
if (da < -M_PI) da += (float)M_PI*2;
if (da > M_PI) da -= (float)M_PI*2;
if (da < -maxDeltaAngle)
{
bestDir = cura - maxDeltaAngle;
bestToi = min(bestToi, interpolateToi(bestDir, tc.dir, tc.toi, tc.n));
}
else if (da > maxDeltaAngle)
{
bestDir = cura + maxDeltaAngle;
bestToi = min(bestToi, interpolateToi(bestDir, tc.dir, tc.toi, tc.n));
}
}
// Adjust speed when time of impact is less than min TOI.
if (bestToi < m_minToi)
vmax *= bestToi/m_minToi;
// New steering velocity.
activeObst->nvel[0] = cosf(bestDir) * vmax;
activeObst->nvel[1] = sinf(bestDir) * vmax;
}
///////////********* TOI_cells**********/////////////////
static void processSamples(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
KX_Obstacles& obstacles, float levelHeight, const float vmax,
const float* spos, const float cs, const int nspos, float* res,
float maxToi, float velWeight, float curVelWeight, float sideWeight,
float toiWeight)
{
vset(res, 0,0);
const float ivmax = 1.0f / vmax;
float adir[2] /*, adist */;
vcpy(adir, activeObst->pvel);
if (vlen(adir) > 0.01f)
vnorm(adir);
else
vset(adir,0,0);
float activeObstPos[2];
vset(activeObstPos, activeObst->m_pos.x(), activeObst->m_pos.y());
/* adist = vdot(adir, activeObstPos); */
float minPenalty = FLT_MAX;
for (int n = 0; n < nspos; ++n)
{
float vcand[2];
vcpy(vcand, &spos[n*2]);
// Find min time of impact and exit amongst all obstacles.
float tmin = maxToi;
float side = 0;
int nside = 0;
for (int i = 0; i < obstacles.size(); ++i)
{
KX_Obstacle* ob = obstacles[i];
bool res = filterObstacle(activeObst, activeNavMeshObj, ob, levelHeight);
if (!res)
continue;
float htmin, htmax;
if (ob->m_shape==KX_OBSTACLE_CIRCLE)
{
float vab[2];
// Moving, use RVO
vscale(vab, vcand, 2);
vsub(vab, vab, activeObst->vel);
vsub(vab, vab, ob->vel);
// Side
// NOTE: dp, and dv are constant over the whole calculation,
// they can be precomputed per object.
const float* pa = activeObstPos;
float pb[2];
vset(pb, ob->m_pos.x(), ob->m_pos.y());
const float orig[2] = {0,0};
float dp[2],dv[2],np[2];
vsub(dp,pb,pa);
vnorm(dp);
vsub(dv,ob->dvel, activeObst->dvel);
const float a = triarea(orig, dp,dv);
if (a < 0.01f)
{
np[0] = -dp[1];
np[1] = dp[0];
}
else
{
np[0] = dp[1];
np[1] = -dp[0];
}
side += clamp(min(vdot(dp,vab)*2,vdot(np,vab)*2), 0.0f, 1.0f);
nside++;
if (!sweepCircleCircle(activeObst->m_pos, activeObst->m_rad, vab, ob->m_pos, ob->m_rad,
htmin, htmax))
continue;
// Handle overlapping obstacles.
if (htmin < 0.0f && htmax > 0.0f)
{
// Avoid more when overlapped.
htmin = -htmin * 0.5f;
}
}
else if (ob->m_shape == KX_OBSTACLE_SEGMENT)
{
MT_Point3 p1 = ob->m_pos;
MT_Point3 p2 = ob->m_pos2;
//apply world transform
if (ob->m_type == KX_OBSTACLE_NAV_MESH)
{
KX_NavMeshObject* navmeshobj = static_cast<KX_NavMeshObject*>(ob->m_gameObj);
p1 = navmeshobj->TransformToWorldCoords(p1);
p2 = navmeshobj->TransformToWorldCoords(p2);
}
float p[2], q[2];
vset(p, p1.x(), p1.y());
vset(q, p2.x(), p2.y());
// NOTE: the segments are assumed to come from a navmesh which is shrunken by
// the agent radius, hence the use of really small radius.
// This can be handle more efficiently by using seg-seg test instead.
// If the whole segment is to be treated as obstacle, use agent->rad instead of 0.01f!
const float r = 0.01f; // agent->rad
if (distPtSegSqr(activeObstPos, p, q) < sqr(r+ob->m_rad))
{
float sdir[2], snorm[2];
vsub(sdir, q, p);
snorm[0] = sdir[1];
snorm[1] = -sdir[0];
// If the velocity is pointing towards the segment, no collision.
if (vdot(snorm, vcand) < 0.0f)
continue;
// Else immediate collision.
htmin = 0.0f;
htmax = 10.0f;
}
else
{
if (!sweepCircleSegment(activeObstPos, r, vcand, p, q, ob->m_rad, htmin, htmax))
continue;
}
// Avoid less when facing walls.
htmin *= 2.0f;
}
if (htmin >= 0.0f)
{
// The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
if (htmin < tmin)
tmin = htmin;
}
}
// Normalize side bias, to prevent it dominating too much.
if (nside)
side /= nside;
const float vpen = velWeight * (vdist(vcand, activeObst->dvel) * ivmax);
const float vcpen = curVelWeight * (vdist(vcand, activeObst->vel) * ivmax);
const float spen = sideWeight * side;
const float tpen = toiWeight * (1.0f/(0.1f+tmin/maxToi));
const float penalty = vpen + vcpen + spen + tpen;
if (penalty < minPenalty)
{
minPenalty = penalty;
vcpy(res, vcand);
}
}
}
void KX_ObstacleSimulationTOI_cells::sampleRVO(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
const float maxDeltaAngle)
{
vset(activeObst->nvel, 0.f, 0.f);
float vmax = vlen(activeObst->dvel);
float* spos = new float[2*m_maxSamples];
int nspos = 0;
if (!m_adaptive)
{
const float cvx = activeObst->dvel[0]*m_bias;
const float cvy = activeObst->dvel[1]*m_bias;
float vmax = vlen(activeObst->dvel);
const float vrange = vmax*(1-m_bias);
const float cs = 1.0f / (float)m_sampleRadius*vrange;
for (int y = -m_sampleRadius; y <= m_sampleRadius; ++y)
{
for (int x = -m_sampleRadius; x <= m_sampleRadius; ++x)
{
if (nspos < m_maxSamples)
{
const float vx = cvx + (float)(x+0.5f)*cs;
const float vy = cvy + (float)(y+0.5f)*cs;
if (vx*vx+vy*vy > sqr(vmax+cs/2)) continue;
spos[nspos*2+0] = vx;
spos[nspos*2+1] = vy;
nspos++;
}
}
}
processSamples(activeObst, activeNavMeshObj, m_obstacles, m_levelHeight, vmax, spos, cs/2,
nspos, activeObst->nvel, m_maxToi, m_velWeight, m_curVelWeight, m_collisionWeight, m_toiWeight);
}
else
{
int rad;
float res[2];
float cs;
// First sample location.
rad = 4;
res[0] = activeObst->dvel[0]*m_bias;
res[1] = activeObst->dvel[1]*m_bias;
cs = vmax*(2-m_bias*2) / (float)(rad-1);
for (int k = 0; k < 5; ++k)
{
const float half = (rad-1)*cs*0.5f;
nspos = 0;
for (int y = 0; y < rad; ++y)
{
for (int x = 0; x < rad; ++x)
{
const float vx = res[0] + x*cs - half;
const float vy = res[1] + y*cs - half;
if (vx*vx+vy*vy > sqr(vmax+cs/2)) continue;
spos[nspos*2+0] = vx;
spos[nspos*2+1] = vy;
nspos++;
}
}
processSamples(activeObst, activeNavMeshObj, m_obstacles, m_levelHeight, vmax, spos, cs/2,
nspos, res, m_maxToi, m_velWeight, m_curVelWeight, m_collisionWeight, m_toiWeight);
cs *= 0.5f;
}
vcpy(activeObst->nvel, res);
}
}
KX_ObstacleSimulationTOI_cells::KX_ObstacleSimulationTOI_cells(MT_Scalar levelHeight, bool enableVisualization)
: KX_ObstacleSimulationTOI(levelHeight, enableVisualization)
, m_bias(0.4f)
, m_adaptive(true)
, m_sampleRadius(15)
{
m_maxSamples = (m_sampleRadius*2+1)*(m_sampleRadius*2+1) + 100;
m_maxToi = 1.5f;
m_velWeight = 2.0f;
m_curVelWeight = 0.75f;
m_toiWeight = 2.5f;
m_collisionWeight = 0.75f; //side_weight
}