blender/intern/cycles/kernel/bvh/bvh_shadow_all.h
2021-04-19 21:07:34 +02:00

278 lines
8.8 KiB
C

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation,
* and code copyright 2009-2012 Intel Corporation
*
* Modifications Copyright 2011-2013, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if BVH_FEATURE(BVH_HAIR)
# define NODE_INTERSECT bvh_node_intersect
#else
# define NODE_INTERSECT bvh_aligned_node_intersect
#endif
/* This is a template BVH traversal function, where various features can be
* enabled/disabled. This way we can compile optimized versions for each case
* without new features slowing things down.
*
* BVH_HAIR: hair curve rendering
* BVH_MOTION: motion blur rendering
*/
#ifndef __KERNEL_GPU__
ccl_device
#else
ccl_device_inline
#endif
bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
const uint visibility,
const uint max_hits,
uint *num_hits)
{
/* todo:
* - likely and unlikely for if() statements
* - test restrict attribute for pointers
*/
/* traversal stack in CUDA thread-local memory */
int traversal_stack[BVH_STACK_SIZE];
traversal_stack[0] = ENTRYPOINT_SENTINEL;
/* traversal variables in registers */
int stack_ptr = 0;
int node_addr = kernel_data.bvh.root;
/* ray parameters in registers */
const float tmax = ray->t;
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
int object = OBJECT_NONE;
float isect_t = tmax;
#if BVH_FEATURE(BVH_MOTION)
Transform ob_itfm;
#endif
int num_hits_in_instance = 0;
*num_hits = 0;
isect_array->t = tmax;
/* traversal loop */
do {
do {
/* traverse internal nodes */
while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
int node_addr_child1, traverse_mask;
float dist[2];
float4 cnodes = kernel_tex_fetch(__bvh_nodes, node_addr + 0);
traverse_mask = NODE_INTERSECT(kg,
P,
#if BVH_FEATURE(BVH_HAIR)
dir,
#endif
idir,
isect_t,
node_addr,
visibility,
dist);
node_addr = __float_as_int(cnodes.z);
node_addr_child1 = __float_as_int(cnodes.w);
if (traverse_mask == 3) {
/* Both children were intersected, push the farther one. */
bool is_closest_child1 = (dist[1] < dist[0]);
if (is_closest_child1) {
int tmp = node_addr;
node_addr = node_addr_child1;
node_addr_child1 = tmp;
}
++stack_ptr;
kernel_assert(stack_ptr < BVH_STACK_SIZE);
traversal_stack[stack_ptr] = node_addr_child1;
}
else {
/* One child was intersected. */
if (traverse_mask == 2) {
node_addr = node_addr_child1;
}
else if (traverse_mask == 0) {
/* Neither child was intersected. */
node_addr = traversal_stack[stack_ptr];
--stack_ptr;
}
}
}
/* if node is leaf, fetch triangle list */
if (node_addr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr - 1));
int prim_addr = __float_as_int(leaf.x);
if (prim_addr >= 0) {
const int prim_addr2 = __float_as_int(leaf.y);
const uint type = __float_as_int(leaf.w);
const uint p_type = type & PRIMITIVE_ALL;
/* pop */
node_addr = traversal_stack[stack_ptr];
--stack_ptr;
/* primitive intersection */
while (prim_addr < prim_addr2) {
kernel_assert((kernel_tex_fetch(__prim_type, prim_addr) & PRIMITIVE_ALL) == p_type);
bool hit;
/* todo: specialized intersect functions which don't fill in
* isect unless needed and check SD_HAS_TRANSPARENT_SHADOW?
* might give a few % performance improvement */
switch (p_type) {
case PRIMITIVE_TRIANGLE: {
hit = triangle_intersect(kg, isect_array, P, dir, visibility, object, prim_addr);
break;
}
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
hit = motion_triangle_intersect(
kg, isect_array, P, dir, ray->time, visibility, object, prim_addr);
break;
}
#endif
#if BVH_FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE_THICK:
case PRIMITIVE_MOTION_CURVE_THICK:
case PRIMITIVE_CURVE_RIBBON:
case PRIMITIVE_MOTION_CURVE_RIBBON: {
const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
hit = curve_intersect(
kg, isect_array, P, dir, visibility, object, prim_addr, ray->time, curve_type);
break;
}
#endif
default: {
hit = false;
break;
}
}
/* shadow ray early termination */
if (hit) {
/* detect if this surface has a shader with transparent shadows */
/* todo: optimize so primitive visibility flag indicates if
* the primitive has a transparent shadow shader? */
const int flags = intersection_get_shader_flags(kg, isect_array);
/* if no transparent shadows, all light is blocked */
if (!(flags & SD_HAS_TRANSPARENT_SHADOW)) {
return true;
}
/* if maximum number of hits reached, block all light */
else if (*num_hits == max_hits) {
return true;
}
/* move on to next entry in intersections array */
isect_array++;
(*num_hits)++;
num_hits_in_instance++;
isect_array->t = isect_t;
}
prim_addr++;
}
}
else {
/* instance push */
object = kernel_tex_fetch(__prim_object, -prim_addr - 1);
#if BVH_FEATURE(BVH_MOTION)
isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm);
#else
isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t);
#endif
num_hits_in_instance = 0;
isect_array->t = isect_t;
++stack_ptr;
kernel_assert(stack_ptr < BVH_STACK_SIZE);
traversal_stack[stack_ptr] = ENTRYPOINT_SENTINEL;
node_addr = kernel_tex_fetch(__object_node, object);
}
}
} while (node_addr != ENTRYPOINT_SENTINEL);
if (stack_ptr >= 0) {
kernel_assert(object != OBJECT_NONE);
/* Instance pop. */
if (num_hits_in_instance) {
float t_fac;
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_itfm);
#else
bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
#endif
/* scale isect->t to adjust for instancing */
for (int i = 0; i < num_hits_in_instance; i++) {
(isect_array - i - 1)->t *= t_fac;
}
}
else {
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm);
#else
bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX);
#endif
}
isect_t = tmax;
isect_array->t = isect_t;
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr];
--stack_ptr;
}
} while (node_addr != ENTRYPOINT_SENTINEL);
return false;
}
ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
const uint visibility,
const uint max_hits,
uint *num_hits)
{
return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, isect_array, visibility, max_hits, num_hits);
}
#undef BVH_FUNCTION_NAME
#undef BVH_FUNCTION_FEATURES
#undef NODE_INTERSECT