blender/intern/cycles/kernel/geom/geom_motion_triangle_shader.h
Campbell Barton e12c08e8d1 ClangFormat: apply to source, most of intern
Apply clang format as proposed in T53211.

For details on usage and instructions for migrating branches
without conflicts, see:

https://wiki.blender.org/wiki/Tools/ClangFormat
2019-04-17 06:21:24 +02:00

112 lines
4.2 KiB
C

/*
* Copyright 2011-2016 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Motion Triangle Primitive
*
* These are stored as regular triangles, plus extra positions and normals at
* times other than the frame center. Computing the triangle vertex positions
* or normals at a given ray time is a matter of interpolation of the two steps
* between which the ray time lies.
*
* The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION
* and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes.
*/
CCL_NAMESPACE_BEGIN
/* Setup of motion triangle specific parts of ShaderData, moved into this one
* function to more easily share computation of interpolated positions and
* normals */
/* return 3 triangle vertex normals */
ccl_device_noinline void motion_triangle_shader_setup(
KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, bool is_local)
{
/* Get shader. */
sd->shader = kernel_tex_fetch(__tri_shader, sd->prim);
/* Get motion info. */
/* TODO(sergey): This logic is really similar to motion_triangle_vertices(),
* can we de-duplicate something here?
*/
int numsteps, numverts;
object_motion_info(kg, sd->object, &numsteps, &numverts, NULL);
/* Figure out which steps we need to fetch and their interpolation factor. */
int maxstep = numsteps * 2;
int step = min((int)(sd->time * maxstep), maxstep - 1);
float t = sd->time * maxstep - step;
/* Find attribute. */
AttributeElement elem;
int offset = find_attribute_motion(kg, sd->object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* Fetch vertex coordinates. */
float3 verts[3], next_verts[3];
uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step + 1, next_verts);
/* Interpolate between steps. */
verts[0] = (1.0f - t) * verts[0] + t * next_verts[0];
verts[1] = (1.0f - t) * verts[1] + t * next_verts[1];
verts[2] = (1.0f - t) * verts[2] + t * next_verts[2];
/* Compute refined position. */
#ifdef __BVH_LOCAL__
if (is_local) {
sd->P = motion_triangle_refine_local(kg, sd, isect, ray, verts);
}
else
#endif /* __BVH_LOCAL__*/
{
sd->P = motion_triangle_refine(kg, sd, isect, ray, verts);
}
/* Compute face normal. */
float3 Ng;
if (sd->object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
Ng = normalize(cross(verts[2] - verts[0], verts[1] - verts[0]));
}
else {
Ng = normalize(cross(verts[1] - verts[0], verts[2] - verts[0]));
}
sd->Ng = Ng;
sd->N = Ng;
/* Compute derivatives of P w.r.t. uv. */
#ifdef __DPDU__
sd->dPdu = (verts[0] - verts[2]);
sd->dPdv = (verts[1] - verts[2]);
#endif
/* Compute smooth normal. */
if (sd->shader & SHADER_SMOOTH_NORMAL) {
/* Find attribute. */
AttributeElement elem;
int offset = find_attribute_motion(kg, sd->object, ATTR_STD_MOTION_VERTEX_NORMAL, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* Fetch vertex coordinates. */
float3 normals[3], next_normals[3];
motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step, normals);
motion_triangle_normals_for_step(
kg, tri_vindex, offset, numverts, numsteps, step + 1, next_normals);
/* Interpolate between steps. */
normals[0] = (1.0f - t) * normals[0] + t * next_normals[0];
normals[1] = (1.0f - t) * normals[1] + t * next_normals[1];
normals[2] = (1.0f - t) * normals[2] + t * next_normals[2];
/* Interpolate between vertices. */
float u = sd->u;
float v = sd->v;
float w = 1.0f - u - v;
sd->N = (u * normals[0] + v * normals[1] + w * normals[2]);
}
}
CCL_NAMESPACE_END