blender/intern/cycles/kernel/kernel_montecarlo.h
Mikhail 21bc1a99ba Cycles: optimize ensure_valid_reflection(), reduces render time by about 1%
This is an implementation that is about 1.5-2.1 times faster. It gives a result
that is on average 6° different from the old implementation. The difference is
because normals (Ng, N, N') are not selected to be coplanar, but instead
reflection R is lifted the least amount and the N' is computed as a bisector.

Differential Revision: https://developer.blender.org/D10084
2021-03-15 18:01:57 +01:00

228 lines
6.5 KiB
C

/*
* Parts adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __KERNEL_MONTECARLO_CL__
#define __KERNEL_MONTECARLO_CL__
CCL_NAMESPACE_BEGIN
/* distribute uniform xy on [0,1] over unit disk [-1,1] */
ccl_device void to_unit_disk(float *x, float *y)
{
float phi = M_2PI_F * (*x);
float r = sqrtf(*y);
*x = r * cosf(phi);
*y = r * sinf(phi);
}
/* return an orthogonal tangent and bitangent given a normal and tangent that
* may not be exactly orthogonal */
ccl_device void make_orthonormals_tangent(const float3 N, const float3 T, float3 *a, float3 *b)
{
*b = normalize(cross(N, T));
*a = cross(*b, N);
}
/* sample direction with cosine weighted distributed in hemisphere */
ccl_device_inline void sample_cos_hemisphere(
const float3 N, float randu, float randv, float3 *omega_in, float *pdf)
{
to_unit_disk(&randu, &randv);
float costheta = sqrtf(max(1.0f - randu * randu - randv * randv, 0.0f));
float3 T, B;
make_orthonormals(N, &T, &B);
*omega_in = randu * T + randv * B + costheta * N;
*pdf = costheta * M_1_PI_F;
}
/* sample direction uniformly distributed in hemisphere */
ccl_device_inline void sample_uniform_hemisphere(
const float3 N, float randu, float randv, float3 *omega_in, float *pdf)
{
float z = randu;
float r = sqrtf(max(0.0f, 1.0f - z * z));
float phi = M_2PI_F * randv;
float x = r * cosf(phi);
float y = r * sinf(phi);
float3 T, B;
make_orthonormals(N, &T, &B);
*omega_in = x * T + y * B + z * N;
*pdf = 0.5f * M_1_PI_F;
}
/* sample direction uniformly distributed in cone */
ccl_device_inline void sample_uniform_cone(
const float3 N, float angle, float randu, float randv, float3 *omega_in, float *pdf)
{
float zMin = cosf(angle);
float z = zMin - zMin * randu + randu;
float r = safe_sqrtf(1.0f - sqr(z));
float phi = M_2PI_F * randv;
float x = r * cosf(phi);
float y = r * sinf(phi);
float3 T, B;
make_orthonormals(N, &T, &B);
*omega_in = x * T + y * B + z * N;
*pdf = M_1_2PI_F / (1.0f - zMin);
}
ccl_device_inline float pdf_uniform_cone(const float3 N, float3 D, float angle)
{
float zMin = cosf(angle);
float z = dot(N, D);
if (z > zMin) {
return M_1_2PI_F / (1.0f - zMin);
}
return 0.0f;
}
/* sample uniform point on the surface of a sphere */
ccl_device float3 sample_uniform_sphere(float u1, float u2)
{
float z = 1.0f - 2.0f * u1;
float r = sqrtf(fmaxf(0.0f, 1.0f - z * z));
float phi = M_2PI_F * u2;
float x = r * cosf(phi);
float y = r * sinf(phi);
return make_float3(x, y, z);
}
ccl_device float balance_heuristic(float a, float b)
{
return (a) / (a + b);
}
ccl_device float balance_heuristic_3(float a, float b, float c)
{
return (a) / (a + b + c);
}
ccl_device float power_heuristic(float a, float b)
{
return (a * a) / (a * a + b * b);
}
ccl_device float power_heuristic_3(float a, float b, float c)
{
return (a * a) / (a * a + b * b + c * c);
}
ccl_device float max_heuristic(float a, float b)
{
return (a > b) ? 1.0f : 0.0f;
}
/* distribute uniform xy on [0,1] over unit disk [-1,1], with concentric mapping
* to better preserve stratification for some RNG sequences */
ccl_device float2 concentric_sample_disk(float u1, float u2)
{
float phi, r;
float a = 2.0f * u1 - 1.0f;
float b = 2.0f * u2 - 1.0f;
if (a == 0.0f && b == 0.0f) {
return zero_float2();
}
else if (a * a > b * b) {
r = a;
phi = M_PI_4_F * (b / a);
}
else {
r = b;
phi = M_PI_2_F - M_PI_4_F * (a / b);
}
return make_float2(r * cosf(phi), r * sinf(phi));
}
/* sample point in unit polygon with given number of corners and rotation */
ccl_device float2 regular_polygon_sample(float corners, float rotation, float u, float v)
{
/* sample corner number and reuse u */
float corner = floorf(u * corners);
u = u * corners - corner;
/* uniform sampled triangle weights */
u = sqrtf(u);
v = v * u;
u = 1.0f - u;
/* point in triangle */
float angle = M_PI_F / corners;
float2 p = make_float2((u + v) * cosf(angle), (u - v) * sinf(angle));
/* rotate */
rotation += corner * 2.0f * angle;
float cr = cosf(rotation);
float sr = sinf(rotation);
return make_float2(cr * p.x - sr * p.y, sr * p.x + cr * p.y);
}
ccl_device float3 ensure_valid_reflection(float3 Ng, float3 I, float3 N)
{
float3 R;
float NI = dot(N, I);
float NgR, threshold;
/* Check if the incident ray is coming from behind normal N. */
if (NI > 0) {
/* Normal reflection */
R = (2 * NI) * N - I;
NgR = dot(Ng, R);
/* Reflection rays may always be at least as shallow as the incoming ray. */
threshold = min(0.9f * dot(Ng, I), 0.01f);
if (NgR >= threshold) {
return N;
}
}
else {
/* Bad incident */
R = -I;
NgR = dot(Ng, R);
threshold = 0.01f;
}
R = R + Ng * (threshold - NgR); /* Lift the reflection above the threshold. */
return normalize(I * len(R) + R * len(I)); /* Find a bisector. */
}
CCL_NAMESPACE_END
#endif /* __KERNEL_MONTECARLO_CL__ */