blender/intern/cycles/kernel/kernel_random.h
2021-02-05 16:23:34 +11:00

322 lines
10 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/kernel_jitter.h"
#include "util/util_hash.h"
CCL_NAMESPACE_BEGIN
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
* this single threaded on a CPU for repeatable results. */
//#define __DEBUG_CORRELATION__
/* High Dimensional Sobol.
*
* Multidimensional sobol with generator matrices. Dimension 0 and 1 are equal
* to classic Van der Corput and Sobol sequences. */
#ifdef __SOBOL__
/* Skip initial numbers that for some dimensions have clear patterns that
* don't cover the entire sample space. Ideally we would have a better
* progressive pattern that doesn't suffer from this problem, because even
* with this offset some dimensions are quite poor.
*/
# define SOBOL_SKIP 64
ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
{
uint result = 0;
uint i = index + SOBOL_SKIP;
for (int j = 0, x; (x = find_first_set(i)); i >>= x) {
j += x;
result ^= kernel_tex_fetch(__sample_pattern_lut, 32 * dimension + j - 1);
}
return result;
}
#endif /* __SOBOL__ */
ccl_device_forceinline float path_rng_1D(
KernelGlobals *kg, uint rng_hash, int sample, int num_samples, int dimension)
{
#ifdef __DEBUG_CORRELATION__
return (float)drand48();
#endif
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ) {
return pmj_sample_1D(kg, sample, rng_hash, dimension);
}
#ifdef __CMJ__
# ifdef __SOBOL__
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ)
# endif
{
/* Correlated multi-jitter. */
int p = rng_hash + dimension;
return cmj_sample_1D(sample, num_samples, p);
}
#endif
#ifdef __SOBOL__
/* Sobol sequence value using direction vectors. */
uint result = sobol_dimension(kg, sample, dimension);
float r = (float)result * (1.0f / (float)0xFFFFFFFF);
/* Cranly-Patterson rotation using rng seed */
float shift;
/* Hash rng with dimension to solve correlation issues.
* See T38710, T50116.
*/
uint tmp_rng = cmj_hash_simple(dimension, rng_hash);
shift = tmp_rng * (1.0f / (float)0xFFFFFFFF);
return r + shift - floorf(r + shift);
#endif
}
ccl_device_forceinline void path_rng_2D(KernelGlobals *kg,
uint rng_hash,
int sample,
int num_samples,
int dimension,
float *fx,
float *fy)
{
#ifdef __DEBUG_CORRELATION__
*fx = (float)drand48();
*fy = (float)drand48();
return;
#endif
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ) {
const float2 f = pmj_sample_2D(kg, sample, rng_hash, dimension);
*fx = f.x;
*fy = f.y;
return;
}
#ifdef __CMJ__
# ifdef __SOBOL__
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ)
# endif
{
/* Correlated multi-jitter. */
int p = rng_hash + dimension;
cmj_sample_2D(sample, num_samples, p, fx, fy);
return;
}
#endif
#ifdef __SOBOL__
/* Sobol. */
*fx = path_rng_1D(kg, rng_hash, sample, num_samples, dimension);
*fy = path_rng_1D(kg, rng_hash, sample, num_samples, dimension + 1);
#endif
}
ccl_device_inline void path_rng_init(KernelGlobals *kg,
int sample,
int num_samples,
uint *rng_hash,
int x,
int y,
float *fx,
float *fy)
{
/* load state */
*rng_hash = hash_uint2(x, y);
*rng_hash ^= kernel_data.integrator.seed;
#ifdef __DEBUG_CORRELATION__
srand48(*rng_hash + sample);
#endif
if (sample == 0) {
*fx = 0.5f;
*fy = 0.5f;
}
else {
path_rng_2D(kg, *rng_hash, sample, num_samples, PRNG_FILTER_U, fx, fy);
}
}
/* Linear Congruential Generator */
ccl_device uint lcg_step_uint(uint *rng)
{
/* implicit mod 2^32 */
*rng = (1103515245 * (*rng) + 12345);
return *rng;
}
ccl_device float lcg_step_float(uint *rng)
{
/* implicit mod 2^32 */
*rng = (1103515245 * (*rng) + 12345);
return (float)*rng * (1.0f / (float)0xFFFFFFFF);
}
ccl_device uint lcg_init(uint seed)
{
uint rng = seed;
lcg_step_uint(&rng);
return rng;
}
/* Path Tracing Utility Functions
*
* For each random number in each step of the path we must have a unique
* dimension to avoid using the same sequence twice.
*
* For branches in the path we must be careful not to reuse the same number
* in a sequence and offset accordingly.
*/
ccl_device_inline float path_state_rng_1D(KernelGlobals *kg,
const ccl_addr_space PathState *state,
int dimension)
{
return path_rng_1D(
kg, state->rng_hash, state->sample, state->num_samples, state->rng_offset + dimension);
}
ccl_device_inline void path_state_rng_2D(
KernelGlobals *kg, const ccl_addr_space PathState *state, int dimension, float *fx, float *fy)
{
path_rng_2D(kg,
state->rng_hash,
state->sample,
state->num_samples,
state->rng_offset + dimension,
fx,
fy);
}
ccl_device_inline float path_state_rng_1D_hash(KernelGlobals *kg,
const ccl_addr_space PathState *state,
uint hash)
{
/* Use a hash instead of dimension, this is not great but avoids adding
* more dimensions to each bounce which reduces quality of dimensions we
* are already using. */
return path_rng_1D(kg,
cmj_hash_simple(state->rng_hash, hash),
state->sample,
state->num_samples,
state->rng_offset);
}
ccl_device_inline float path_branched_rng_1D(KernelGlobals *kg,
uint rng_hash,
const ccl_addr_space PathState *state,
int branch,
int num_branches,
int dimension)
{
return path_rng_1D(kg,
rng_hash,
state->sample * num_branches + branch,
state->num_samples * num_branches,
state->rng_offset + dimension);
}
ccl_device_inline void path_branched_rng_2D(KernelGlobals *kg,
uint rng_hash,
const ccl_addr_space PathState *state,
int branch,
int num_branches,
int dimension,
float *fx,
float *fy)
{
path_rng_2D(kg,
rng_hash,
state->sample * num_branches + branch,
state->num_samples * num_branches,
state->rng_offset + dimension,
fx,
fy);
}
/* Utility functions to get light termination value,
* since it might not be needed in many cases.
*/
ccl_device_inline float path_state_rng_light_termination(KernelGlobals *kg,
const ccl_addr_space PathState *state)
{
if (kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
return path_state_rng_1D(kg, state, PRNG_LIGHT_TERMINATE);
}
return 0.0f;
}
ccl_device_inline float path_branched_rng_light_termination(KernelGlobals *kg,
uint rng_hash,
const ccl_addr_space PathState *state,
int branch,
int num_branches)
{
if (kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
return path_branched_rng_1D(kg, rng_hash, state, branch, num_branches, PRNG_LIGHT_TERMINATE);
}
return 0.0f;
}
ccl_device_inline uint lcg_state_init(PathState *state, uint scramble)
{
return lcg_init(state->rng_hash + state->rng_offset + state->sample * scramble);
}
ccl_device_inline uint lcg_state_init_addrspace(ccl_addr_space PathState *state, uint scramble)
{
return lcg_init(state->rng_hash + state->rng_offset + state->sample * scramble);
}
ccl_device float lcg_step_float_addrspace(ccl_addr_space uint *rng)
{
/* Implicit mod 2^32 */
*rng = (1103515245 * (*rng) + 12345);
return (float)*rng * (1.0f / (float)0xFFFFFFFF);
}
ccl_device_inline bool sample_is_even(int pattern, int sample)
{
if (pattern == SAMPLING_PATTERN_PMJ) {
/* See Section 10.2.1, "Progressive Multi-Jittered Sample Sequences", Christensen et al.
* We can use this to get divide sample sequence into two classes for easier variance
* estimation. */
#if defined(__GNUC__) && !defined(__KERNEL_GPU__)
return __builtin_popcount(sample & 0xaaaaaaaa) & 1;
#elif defined(__NVCC__)
return __popc(sample & 0xaaaaaaaa) & 1;
#elif defined(__KERNEL_OPENCL__)
return popcount(sample & 0xaaaaaaaa) & 1;
#else
/* TODO(Stefan): pop-count intrinsic for Windows with fallback for older CPUs. */
int i = sample & 0xaaaaaaaa;
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = (((i + (i >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
return i & 1;
#endif
}
else {
/* TODO(Stefan): Are there reliable ways of dividing CMJ and Sobol into two classes? */
return sample & 0x1;
}
}
CCL_NAMESPACE_END