blender/intern/cycles/kernel/shaders/node_musgrave_texture.osl
Kévin Dietrich b980cd163a Cycles: fix compilation of OSL shaders following API change
The names of the parameters are based on those of those of the sockets, so they also need to be updated. This was forgotten about in the previous commit (rBa284e559b90e).

Ref T82561.
2020-11-10 18:59:30 +01:00

804 lines
20 KiB
Plaintext

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "node_noise.h"
#include "stdcycles.h"
#include "vector2.h"
#include "vector4.h"
#define vector3 point
/* 1D Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
float noise_musgrave_fBm_1d(float co, float H, float lacunarity, float octaves)
{
float p = co;
float value = 0.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value += safe_snoise(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value += rmd * safe_snoise(p) * pwr;
}
return value;
}
/* 1D Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
float noise_musgrave_multi_fractal_1d(float co, float H, float lacunarity, float octaves)
{
float p = co;
float value = 1.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value *= (pwr * safe_snoise(p) + 1.0);
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */
}
return value;
}
/* 1D Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hetero_terrain_1d(
float co, float H, float lacunarity, float octaves, float offset)
{
float p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
float value = offset + safe_snoise(p);
p *= lacunarity;
for (int i = 1; i < (int)octaves; i++) {
float increment = (safe_snoise(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float increment = (safe_snoise(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* 1D Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hybrid_multi_fractal_1d(
float co, float H, float lacunarity, float octaves, float offset, float gain)
{
float p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
float value = safe_snoise(p) + offset;
float weight = gain * value;
p *= lacunarity;
for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) {
if (weight > 1.0) {
weight = 1.0;
}
float signal = (safe_snoise(p) + offset) * pwr;
pwr *= pwHL;
value += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value += rmd * ((safe_snoise(p) + offset) * pwr);
}
return value;
}
/* 1D Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_ridged_multi_fractal_1d(
float co, float H, float lacunarity, float octaves, float offset, float gain)
{
float p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
float signal = offset - fabs(safe_snoise(p));
signal *= signal;
float value = signal;
float weight = 1.0;
for (int i = 1; i < (int)octaves; i++) {
p *= lacunarity;
weight = clamp(signal * gain, 0.0, 1.0);
signal = offset - fabs(safe_snoise(p));
signal *= signal;
signal *= weight;
value += signal * pwr;
pwr *= pwHL;
}
return value;
}
/* 2D Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
float noise_musgrave_fBm_2d(vector2 co, float H, float lacunarity, float octaves)
{
vector2 p = co;
float value = 0.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value += safe_snoise(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value += rmd * safe_snoise(p) * pwr;
}
return value;
}
/* 2D Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
float noise_musgrave_multi_fractal_2d(vector2 co, float H, float lacunarity, float octaves)
{
vector2 p = co;
float value = 1.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value *= (pwr * safe_snoise(p) + 1.0);
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */
}
return value;
}
/* 2D Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hetero_terrain_2d(
vector2 co, float H, float lacunarity, float octaves, float offset)
{
vector2 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
float value = offset + safe_snoise(p);
p *= lacunarity;
for (int i = 1; i < (int)octaves; i++) {
float increment = (safe_snoise(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float increment = (safe_snoise(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* 2D Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hybrid_multi_fractal_2d(
vector2 co, float H, float lacunarity, float octaves, float offset, float gain)
{
vector2 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
float value = safe_snoise(p) + offset;
float weight = gain * value;
p *= lacunarity;
for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) {
if (weight > 1.0) {
weight = 1.0;
}
float signal = (safe_snoise(p) + offset) * pwr;
pwr *= pwHL;
value += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value += rmd * ((safe_snoise(p) + offset) * pwr);
}
return value;
}
/* 2D Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_ridged_multi_fractal_2d(
vector2 co, float H, float lacunarity, float octaves, float offset, float gain)
{
vector2 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
float signal = offset - fabs(safe_snoise(p));
signal *= signal;
float value = signal;
float weight = 1.0;
for (int i = 1; i < (int)octaves; i++) {
p *= lacunarity;
weight = clamp(signal * gain, 0.0, 1.0);
signal = offset - fabs(safe_snoise(p));
signal *= signal;
signal *= weight;
value += signal * pwr;
pwr *= pwHL;
}
return value;
}
/* 3D Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
float noise_musgrave_fBm_3d(vector3 co, float H, float lacunarity, float octaves)
{
vector3 p = co;
float value = 0.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value += safe_snoise(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value += rmd * safe_snoise(p) * pwr;
}
return value;
}
/* 3D Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
float noise_musgrave_multi_fractal_3d(vector3 co, float H, float lacunarity, float octaves)
{
vector3 p = co;
float value = 1.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value *= (pwr * safe_snoise(p) + 1.0);
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */
}
return value;
}
/* 3D Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hetero_terrain_3d(
vector3 co, float H, float lacunarity, float octaves, float offset)
{
vector3 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
float value = offset + safe_snoise(p);
p *= lacunarity;
for (int i = 1; i < (int)octaves; i++) {
float increment = (safe_snoise(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float increment = (safe_snoise(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* 3D Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hybrid_multi_fractal_3d(
vector3 co, float H, float lacunarity, float octaves, float offset, float gain)
{
vector3 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
float value = safe_snoise(p) + offset;
float weight = gain * value;
p *= lacunarity;
for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) {
if (weight > 1.0) {
weight = 1.0;
}
float signal = (safe_snoise(p) + offset) * pwr;
pwr *= pwHL;
value += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value += rmd * ((safe_snoise(p) + offset) * pwr);
}
return value;
}
/* 3D Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_ridged_multi_fractal_3d(
vector3 co, float H, float lacunarity, float octaves, float offset, float gain)
{
vector3 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
float signal = offset - fabs(safe_snoise(p));
signal *= signal;
float value = signal;
float weight = 1.0;
for (int i = 1; i < (int)octaves; i++) {
p *= lacunarity;
weight = clamp(signal * gain, 0.0, 1.0);
signal = offset - fabs(safe_snoise(p));
signal *= signal;
signal *= weight;
value += signal * pwr;
pwr *= pwHL;
}
return value;
}
/* 4D Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
float noise_musgrave_fBm_4d(vector4 co, float H, float lacunarity, float octaves)
{
vector4 p = co;
float value = 0.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value += safe_snoise(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value += rmd * safe_snoise(p) * pwr;
}
return value;
}
/* 4D Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
float noise_musgrave_multi_fractal_4d(vector4 co, float H, float lacunarity, float octaves)
{
vector4 p = co;
float value = 1.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value *= (pwr * safe_snoise(p) + 1.0);
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */
}
return value;
}
/* 4D Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hetero_terrain_4d(
vector4 co, float H, float lacunarity, float octaves, float offset)
{
vector4 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
float value = offset + safe_snoise(p);
p *= lacunarity;
for (int i = 1; i < (int)octaves; i++) {
float increment = (safe_snoise(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float increment = (safe_snoise(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* 4D Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hybrid_multi_fractal_4d(
vector4 co, float H, float lacunarity, float octaves, float offset, float gain)
{
vector4 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
float value = safe_snoise(p) + offset;
float weight = gain * value;
p *= lacunarity;
for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) {
if (weight > 1.0) {
weight = 1.0;
}
float signal = (safe_snoise(p) + offset) * pwr;
pwr *= pwHL;
value += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
value += rmd * ((safe_snoise(p) + offset) * pwr);
}
return value;
}
/* 4D Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_ridged_multi_fractal_4d(
vector4 co, float H, float lacunarity, float octaves, float offset, float gain)
{
vector4 p = co;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
float signal = offset - fabs(safe_snoise(p));
signal *= signal;
float value = signal;
float weight = 1.0;
for (int i = 1; i < (int)octaves; i++) {
p *= lacunarity;
weight = clamp(signal * gain, 0.0, 1.0);
signal = offset - fabs(safe_snoise(p));
signal *= signal;
signal *= weight;
value += signal * pwr;
pwr *= pwHL;
}
return value;
}
shader node_musgrave_texture(
int use_mapping = 0,
matrix mapping = matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
string musgrave_type = "fBM",
string dimensions = "3D",
point Vector = P,
float W = 0.0,
float Dimension = 2.0,
float Scale = 5.0,
float Detail = 2.0,
float Lacunarity = 2.0,
float Offset = 0.0,
float Gain = 1.0,
output float Fac = 0.0)
{
float dimension = max(Dimension, 1e-5);
float octaves = clamp(Detail, 0.0, 16.0);
float lacunarity = max(Lacunarity, 1e-5);
vector3 s = Vector;
if (use_mapping)
s = transform(mapping, s);
if (dimensions == "1D") {
float p = W * Scale;
if (musgrave_type == "multifractal") {
Fac = noise_musgrave_multi_fractal_1d(p, dimension, lacunarity, octaves);
}
else if (musgrave_type == "fBM") {
Fac = noise_musgrave_fBm_1d(p, dimension, lacunarity, octaves);
}
else if (musgrave_type == "hybrid_multifractal") {
Fac = noise_musgrave_hybrid_multi_fractal_1d(
p, dimension, lacunarity, octaves, Offset, Gain);
}
else if (musgrave_type == "ridged_multifractal") {
Fac = noise_musgrave_ridged_multi_fractal_1d(
p, dimension, lacunarity, octaves, Offset, Gain);
}
else if (musgrave_type == "hetero_terrain") {
Fac = noise_musgrave_hetero_terrain_1d(p, dimension, lacunarity, octaves, Offset);
}
else {
Fac = 0.0;
}
}
else if (dimensions == "2D") {
vector2 p = vector2(s[0], s[1]) * Scale;
if (musgrave_type == "multifractal") {
Fac = noise_musgrave_multi_fractal_2d(p, dimension, lacunarity, octaves);
}
else if (musgrave_type == "fBM") {
Fac = noise_musgrave_fBm_2d(p, dimension, lacunarity, octaves);
}
else if (musgrave_type == "hybrid_multifractal") {
Fac = noise_musgrave_hybrid_multi_fractal_2d(
p, dimension, lacunarity, octaves, Offset, Gain);
}
else if (musgrave_type == "ridged_multifractal") {
Fac = noise_musgrave_ridged_multi_fractal_2d(
p, dimension, lacunarity, octaves, Offset, Gain);
}
else if (musgrave_type == "hetero_terrain") {
Fac = noise_musgrave_hetero_terrain_2d(p, dimension, lacunarity, octaves, Offset);
}
else {
Fac = 0.0;
}
}
else if (dimensions == "3D") {
vector3 p = s * Scale;
if (musgrave_type == "multifractal") {
Fac = noise_musgrave_multi_fractal_3d(p, dimension, lacunarity, octaves);
}
else if (musgrave_type == "fBM") {
Fac = noise_musgrave_fBm_3d(p, dimension, lacunarity, octaves);
}
else if (musgrave_type == "hybrid_multifractal") {
Fac = noise_musgrave_hybrid_multi_fractal_3d(
p, dimension, lacunarity, octaves, Offset, Gain);
}
else if (musgrave_type == "ridged_multifractal") {
Fac = noise_musgrave_ridged_multi_fractal_3d(
p, dimension, lacunarity, octaves, Offset, Gain);
}
else if (musgrave_type == "hetero_terrain") {
Fac = noise_musgrave_hetero_terrain_3d(p, dimension, lacunarity, octaves, Offset);
}
else {
Fac = 0.0;
}
}
else if (dimensions == "4D") {
vector4 p = vector4(s[0], s[1], s[2], W) * Scale;
if (musgrave_type == "multifractal") {
Fac = noise_musgrave_multi_fractal_4d(p, dimension, lacunarity, octaves);
}
else if (musgrave_type == "fBM") {
Fac = noise_musgrave_fBm_4d(p, dimension, lacunarity, octaves);
}
else if (musgrave_type == "hybrid_multifractal") {
Fac = noise_musgrave_hybrid_multi_fractal_4d(
p, dimension, lacunarity, octaves, Offset, Gain);
}
else if (musgrave_type == "ridged_multifractal") {
Fac = noise_musgrave_ridged_multi_fractal_4d(
p, dimension, lacunarity, octaves, Offset, Gain);
}
else if (musgrave_type == "hetero_terrain") {
Fac = noise_musgrave_hetero_terrain_4d(p, dimension, lacunarity, octaves, Offset);
}
else {
Fac = 0.0;
}
}
else {
Fac = 0.0;
}
}