blender/intern/cycles/util/util_ies.cpp

412 lines
12 KiB
C++

/*
* Copyright 2011-2018 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "util/util_foreach.h"
#include "util/util_ies.h"
#include "util/util_math.h"
#include "util/util_string.h"
CCL_NAMESPACE_BEGIN
// NOTE: For some reason gcc-7.2 does not instantiate this versio of allocator
// gere (used in IESTextParser). Works fine for gcc-6, gcc-7.3 and gcc-8.
//
// TODO(sergey): Get to the root of this issue, or confirm this i a compiler
// issue.
template class GuardedAllocator<char>;
bool IESFile::load(const string &ies)
{
clear();
if (!parse(ies) || !process()) {
clear();
return false;
}
return true;
}
void IESFile::clear()
{
intensity.clear();
v_angles.clear();
h_angles.clear();
}
int IESFile::packed_size()
{
if (v_angles.size() && h_angles.size() > 0) {
return 2 + h_angles.size() + v_angles.size() + h_angles.size() * v_angles.size();
}
return 0;
}
void IESFile::pack(float *data)
{
if (v_angles.size() && h_angles.size()) {
*(data++) = __int_as_float(h_angles.size());
*(data++) = __int_as_float(v_angles.size());
memcpy(data, &h_angles[0], h_angles.size() * sizeof(float));
data += h_angles.size();
memcpy(data, &v_angles[0], v_angles.size() * sizeof(float));
data += v_angles.size();
for (int h = 0; h < intensity.size(); h++) {
memcpy(data, &intensity[h][0], v_angles.size() * sizeof(float));
data += v_angles.size();
}
}
}
class IESTextParser {
public:
vector<char> text;
char *data;
IESTextParser(const string &str) : text(str.begin(), str.end())
{
std::replace(text.begin(), text.end(), ',', ' ');
data = strstr(&text[0], "\nTILT=");
}
bool eof()
{
return (data == NULL) || (data[0] == '\0');
}
double get_double()
{
if (eof()) {
return 0.0;
}
char *old_data = data;
double val = strtod(data, &data);
if (data == old_data) {
data = NULL;
return 0.0;
}
return val;
}
long get_long()
{
if (eof()) {
return 0;
}
char *old_data = data;
long val = strtol(data, &data, 10);
if (data == old_data) {
data = NULL;
return 0;
}
return val;
}
};
bool IESFile::parse(const string &ies)
{
if (ies.empty()) {
return false;
}
IESTextParser parser(ies);
if (parser.eof()) {
return false;
}
/* Handle the tilt data block. */
if (strncmp(parser.data, "\nTILT=INCLUDE", 13) == 0) {
parser.data += 13;
parser.get_double(); /* Lamp to Luminaire geometry */
int num_tilt = parser.get_long(); /* Amount of tilt angles and factors */
/* Skip over angles and factors. */
for (int i = 0; i < 2 * num_tilt; i++) {
parser.get_double();
}
}
else {
/* Skip to next line. */
parser.data = strstr(parser.data + 1, "\n");
}
if (parser.eof()) {
return false;
}
parser.data++;
parser.get_long(); /* Number of lamps */
parser.get_double(); /* Lumens per lamp */
double factor = parser.get_double(); /* Candela multiplier */
int v_angles_num = parser.get_long(); /* Number of vertical angles */
int h_angles_num = parser.get_long(); /* Number of horizontal angles */
type = (IESType)parser.get_long(); /* Photometric type */
/* TODO(lukas): Test whether the current type B processing can also deal with type A files.
* In theory the only difference should be orientation which we ignore anyways, but with IES you
* never know...
*/
if (type != TYPE_B && type != TYPE_C) {
return false;
}
parser.get_long(); /* Unit of the geometry data */
parser.get_double(); /* Width */
parser.get_double(); /* Length */
parser.get_double(); /* Height */
factor *= parser.get_double(); /* Ballast factor */
factor *= parser.get_double(); /* Ballast-Lamp Photometric factor */
parser.get_double(); /* Input Watts */
/* Intensity values in IES files are specified in candela (lumen/sr), a photometric quantity.
* Cycles expects radiometric quantities, though, which requires a conversion.
* However, the Luminous efficacy (ratio of lumens per Watt) depends on the spectral distribution
* of the light source since lumens take human perception into account.
* Since this spectral distribution is not known from the IES file, a typical one must be
* assumed. The D65 standard illuminant has a Luminous efficacy of 177.83, which is used here to
* convert to Watt/sr. A more advanced approach would be to add a Blackbody Temperature input to
* the node and numerically integrate the Luminous efficacy from the resulting spectral
* distribution. Also, the Watt/sr value must be multiplied by 4*pi to get the Watt value that
* Cycles expects for lamp strength. Therefore, the conversion here uses 4*pi/177.83 as a Candela
* to Watt factor.
*/
factor *= 0.0706650768394;
v_angles.reserve(v_angles_num);
for (int i = 0; i < v_angles_num; i++) {
v_angles.push_back((float)parser.get_double());
}
h_angles.reserve(h_angles_num);
for (int i = 0; i < h_angles_num; i++) {
h_angles.push_back((float)parser.get_double());
}
intensity.resize(h_angles_num);
for (int i = 0; i < h_angles_num; i++) {
intensity[i].reserve(v_angles_num);
for (int j = 0; j < v_angles_num; j++) {
intensity[i].push_back((float)(factor * parser.get_double()));
}
}
return !parser.eof();
}
bool IESFile::process_type_b()
{
vector<vector<float>> newintensity;
newintensity.resize(v_angles.size());
for (int i = 0; i < v_angles.size(); i++) {
newintensity[i].reserve(h_angles.size());
for (int j = 0; j < h_angles.size(); j++) {
newintensity[i].push_back(intensity[j][i]);
}
}
intensity.swap(newintensity);
h_angles.swap(v_angles);
float h_first = h_angles[0], h_last = h_angles[h_angles.size() - 1];
if (h_last != 90.0f) {
return false;
}
if (h_first == 0.0f) {
/* The range in the file corresponds to 90°-180°, we need to mirror that to get the
* full 180° range. */
vector<float> new_h_angles;
vector<vector<float>> new_intensity;
int hnum = h_angles.size();
new_h_angles.reserve(2 * hnum - 1);
new_intensity.reserve(2 * hnum - 1);
for (int i = hnum - 1; i > 0; i--) {
new_h_angles.push_back(90.0f - h_angles[i]);
new_intensity.push_back(intensity[i]);
}
for (int i = 0; i < hnum; i++) {
new_h_angles.push_back(90.0f + h_angles[i]);
new_intensity.push_back(intensity[i]);
}
h_angles.swap(new_h_angles);
intensity.swap(new_intensity);
}
else if (h_first == -90.0f) {
/* We have full 180° coverage, so just shift to match the angle range convention. */
for (int i = 0; i < h_angles.size(); i++) {
h_angles[i] += 90.0f;
}
}
/* To get correct results with the cubic interpolation in the kernel, the horizontal range
* has to cover all 360°. Therefore, we copy the 0° entry to 360° to ensure full coverage
* and seamless interpolation. */
h_angles.push_back(360.0f);
intensity.push_back(intensity[0]);
float v_first = v_angles[0], v_last = v_angles[v_angles.size() - 1];
if (v_last != 90.0f) {
return false;
}
if (v_first == 0.0f) {
/* The range in the file corresponds to 90°-180°, we need to mirror that to get the
* full 180° range. */
vector<float> new_v_angles;
int hnum = h_angles.size();
int vnum = v_angles.size();
new_v_angles.reserve(2 * vnum - 1);
for (int i = vnum - 1; i > 0; i--) {
new_v_angles.push_back(90.0f - v_angles[i]);
}
for (int i = 0; i < vnum; i++) {
new_v_angles.push_back(90.0f + v_angles[i]);
}
for (int i = 0; i < hnum; i++) {
vector<float> new_intensity;
new_intensity.reserve(2 * vnum - 1);
for (int j = vnum - 2; j >= 0; j--) {
new_intensity.push_back(intensity[i][j]);
}
new_intensity.insert(new_intensity.end(), intensity[i].begin(), intensity[i].end());
intensity[i].swap(new_intensity);
}
v_angles.swap(new_v_angles);
}
else if (v_first == -90.0f) {
/* We have full 180° coverage, so just shift to match the angle range convention. */
for (int i = 0; i < v_angles.size(); i++) {
v_angles[i] += 90.0f;
}
}
return true;
}
bool IESFile::process_type_c()
{
if (h_angles[0] == 90.0f) {
/* Some files are stored from 90° to 270°, so we just rotate them to the regular 0°-180° range
* here. */
for (int i = 0; i < h_angles.size(); i++) {
h_angles[i] -= 90.0f;
}
}
if (h_angles[0] != 0.0f) {
return false;
}
if (h_angles.size() == 1) {
h_angles.push_back(360.0f);
intensity.push_back(intensity[0]);
}
if (h_angles[h_angles.size() - 1] == 90.0f) {
/* Only one quadrant is defined, so we need to mirror twice (from one to two, then to four).
* Since the two->four mirroring step might also be required if we get an input of two
* quadrants, we only do the first mirror here and later do the second mirror in either case.
*/
int hnum = h_angles.size();
for (int i = hnum - 2; i >= 0; i--) {
h_angles.push_back(180.0f - h_angles[i]);
intensity.push_back(intensity[i]);
}
}
if (h_angles[h_angles.size() - 1] == 180.0f) {
/* Mirror half to the full range. */
int hnum = h_angles.size();
for (int i = hnum - 2; i >= 0; i--) {
h_angles.push_back(360.0f - h_angles[i]);
intensity.push_back(intensity[i]);
}
}
/* Some files skip the 360° entry (contrary to standard) because it's supposed to be identical to
* the 0° entry. If the file has a discernible order in its spacing, just fix this. */
if (h_angles[h_angles.size() - 1] != 360.0f) {
int hnum = h_angles.size();
float last_step = h_angles[hnum - 1] - h_angles[hnum - 2];
float first_step = h_angles[1] - h_angles[0];
float difference = 360.0f - h_angles[hnum - 1];
if (last_step == difference || first_step == difference) {
h_angles.push_back(360.0f);
intensity.push_back(intensity[0]);
}
else {
return false;
}
}
float v_first = v_angles[0], v_last = v_angles[v_angles.size() - 1];
if (v_first == 90.0f) {
if (v_last == 180.0f) {
/* Flip to ensure that vertical angles always start at 0°. */
for (int i = 0; i < v_angles.size(); i++) {
v_angles[i] = 180.0f - v_angles[i];
}
}
else {
return false;
}
}
else if (v_first != 0.0f) {
return false;
}
return true;
}
bool IESFile::process()
{
if (h_angles.size() == 0 || v_angles.size() == 0) {
return false;
}
if (type == TYPE_B) {
if (!process_type_b()) {
return false;
}
}
else {
assert(type == TYPE_C);
if (!process_type_c()) {
return false;
}
}
assert(v_angles[0] == 0.0f);
assert(h_angles[0] == 0.0f);
assert(h_angles[h_angles.size() - 1] == 360.0f);
/* Convert from deg to rad. */
for (int i = 0; i < v_angles.size(); i++) {
v_angles[i] *= M_PI_F / 180.f;
}
for (int i = 0; i < h_angles.size(); i++) {
h_angles[i] *= M_PI_F / 180.f;
}
return true;
}
IESFile::~IESFile()
{
clear();
}
CCL_NAMESPACE_END