blender/intern/cycles/kernel/svm/svm_closure.h
Brecht Van Lommel 27d647dcf8 Cycles: 4 new nodes.
* Tangent: generate a tangent direction for anisotropic shading. Can be either
  radial around X/Y/Z axis, or from a UV map. The default tangent for the
  anisotropic BSDF and geometry node is now always radial Z, for UV tangent use
  this node now.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Tangent

* Normal Map: generate a perturbed normal from an RGB normal map image. This
  is usually chained with an Image Texture node in the color input, to specify
  the normal map image. For tangent space normal maps, the UV coordinates for
  the image must match, and the image texture should be set to Non-Color mode
  to give correct results.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Normal_Map

* Refraction BSDF: for best results this node should be considered as a building
  block and not be used on its own, but rather mixed with a glossy node using a
  fresnel type factor. Otherwise it will give quite dark results at the edges for
  glossy refraction.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Refraction

* Ambient Occlusion: controls the amount of AO a surface receives, rather than
  having just a global factor in the world. Note that this outputs a shader and
  not a color, that's for another time.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Ambient_Occlusion
2012-11-06 19:59:02 +00:00

544 lines
15 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Closure Nodes */
__device void svm_node_glass_setup(ShaderData *sd, ShaderClosure *sc, int type, float eta, float roughness, bool refract)
{
if(type == CLOSURE_BSDF_SHARP_GLASS_ID) {
if(refract) {
sc->data0 = eta;
sd->flag |= bsdf_refraction_setup(sc);
}
else
sd->flag |= bsdf_reflection_setup(sc);
}
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID) {
sc->data0 = roughness;
sc->data1 = eta;
if(refract)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_beckmann_setup(sc);
}
else {
sc->data0 = roughness;
sc->data1 = eta;
if(refract)
sd->flag |= bsdf_microfacet_ggx_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_setup(sc);
}
}
__device_inline ShaderClosure *svm_node_closure_get(ShaderData *sd)
{
#ifdef __MULTI_CLOSURE__
ShaderClosure *sc = &sd->closure[sd->num_closure];
if(sd->num_closure < MAX_CLOSURE)
sd->num_closure++;
return sc;
#else
return &sd->closure;
#endif
}
__device_inline void svm_node_closure_set_mix_weight(ShaderClosure *sc, float mix_weight)
{
#ifdef __MULTI_CLOSURE__
sc->weight *= mix_weight;
sc->sample_weight = fabsf(average(sc->weight));
#endif
}
__device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, float randb, int path_flag, int *offset)
{
uint type, param1_offset, param2_offset;
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
/* note we read this extra node before weight check, so offset is added */
uint4 data_node = read_node(kg, offset);
if(mix_weight == 0.0f)
return;
float3 N = stack_valid(data_node.y)? stack_load_float3(stack, data_node.y): sd->N;
#else
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, NULL);
float mix_weight = 1.0f;
uint4 data_node = read_node(kg, offset);
float3 N = stack_valid(data_node.y)? stack_load_float3(stack, data_node.y): sd->N;
#endif
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __int_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __int_as_float(node.w);
switch(type) {
case CLOSURE_BSDF_DIFFUSE_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
svm_node_closure_set_mix_weight(sc, mix_weight);
float roughness = param1;
if(roughness == 0.0f) {
sd->flag |= bsdf_diffuse_setup(sc);
}
else {
sc->data0 = roughness;
sd->flag |= bsdf_oren_nayar_setup(sc);
}
break;
}
case CLOSURE_BSDF_TRANSLUCENT_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
svm_node_closure_set_mix_weight(sc, mix_weight);
sd->flag |= bsdf_translucent_setup(sc);
break;
}
case CLOSURE_BSDF_TRANSPARENT_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
svm_node_closure_set_mix_weight(sc, mix_weight);
sd->flag |= bsdf_transparent_setup(sc);
break;
}
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
sc->data0 = param1;
svm_node_closure_set_mix_weight(sc, mix_weight);
/* setup bsdf */
if(type == CLOSURE_BSDF_REFLECTION_ID)
sd->flag |= bsdf_reflection_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
sd->flag |= bsdf_microfacet_beckmann_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_setup(sc);
break;
}
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
sc->data0 = param1;
svm_node_closure_set_mix_weight(sc, mix_weight);
float eta = fmaxf(param2, 1.0f + 1e-5f);
sc->data1 = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFRACTION_ID)
sd->flag |= bsdf_refraction_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_refraction_setup(sc);
break;
}
case CLOSURE_BSDF_SHARP_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
/* index of refraction */
float eta = fmaxf(param2, 1.0f + 1e-5f);
eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* fresnel */
float cosNO = dot(N, sd->I);
float fresnel = fresnel_dielectric_cos(cosNO, eta);
float roughness = param1;
#ifdef __MULTI_CLOSURE__
/* reflection */
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
float3 weight = sc->weight;
float sample_weight = sc->sample_weight;
svm_node_closure_set_mix_weight(sc, mix_weight*fresnel);
svm_node_glass_setup(sd, sc, type, eta, roughness, false);
/* refraction */
sc = svm_node_closure_get(sd);
sc->N = N;
sc->weight = weight;
sc->sample_weight = sample_weight;
svm_node_closure_set_mix_weight(sc, mix_weight*(1.0f - fresnel));
svm_node_glass_setup(sd, sc, type, eta, roughness, true);
#else
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
bool refract = (randb > fresnel);
svm_node_closure_set_mix_weight(sc, mix_weight);
svm_node_glass_setup(sd, sc, type, eta, roughness, refract);
#endif
break;
}
#ifdef __DPDU__
case CLOSURE_BSDF_WARD_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
sc->T = stack_load_float3(stack, data_node.z);
svm_node_closure_set_mix_weight(sc, mix_weight);
/* rotate tangent */
float rotation = stack_load_float(stack, data_node.w);
if(rotation != 0.0f)
sc->T = rotate_around_axis(sc->T, sc->N, rotation * 2.0f * M_PI_F);
/* compute roughness */
float roughness = param1;
float anisotropy = clamp(param2, -0.99f, 0.99f);
if(anisotropy < 0.0f) {
sc->data0 = roughness/(1.0f + anisotropy);
sc->data1 = roughness*(1.0f + anisotropy);
}
else {
sc->data0 = roughness*(1.0f - anisotropy);
sc->data1 = roughness/(1.0f - anisotropy);
}
sd->flag |= bsdf_ward_setup(sc);
break;
}
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
svm_node_closure_set_mix_weight(sc, mix_weight);
/* sigma */
sc->data0 = clamp(param1, 0.0f, 1.0f);
sd->flag |= bsdf_ashikhmin_velvet_setup(sc);
break;
}
default:
break;
}
}
__device void svm_node_closure_volume(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag)
{
uint type, param1_offset, param2_offset;
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
if(mix_weight == 0.0f)
return;
#else
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, NULL);
float mix_weight = 1.0f;
#endif
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __int_as_float(node.z);
//float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __int_as_float(node.w);
switch(type) {
case CLOSURE_VOLUME_TRANSPARENT_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
svm_node_closure_set_mix_weight(sc, mix_weight);
float density = param1;
sd->flag |= volume_transparent_setup(sc, density);
break;
}
case CLOSURE_VOLUME_ISOTROPIC_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
svm_node_closure_set_mix_weight(sc, mix_weight);
float density = param1;
sd->flag |= volume_isotropic_setup(sc, density);
break;
}
default:
break;
}
}
__device void svm_node_closure_emission(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight *= mix_weight;
sc->type = CLOSURE_EMISSION_ID;
}
else {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->type = CLOSURE_EMISSION_ID;
}
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_EMISSION_ID;
#endif
sd->flag |= SD_EMISSION;
}
__device void svm_node_closure_background(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight *= mix_weight;
sc->type = CLOSURE_BACKGROUND_ID;
}
else {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->type = CLOSURE_BACKGROUND_ID;
}
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_BACKGROUND_ID;
#endif
}
__device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight = make_float3(mix_weight, mix_weight, mix_weight);
sc->type = CLOSURE_HOLDOUT_ID;
}
else {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight = make_float3(1.0f, 1.0f, 1.0f);
sc->type = CLOSURE_HOLDOUT_ID;
}
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_HOLDOUT_ID;
#endif
sd->flag |= SD_HOLDOUT;
}
__device void svm_node_closure_ambient_occlusion(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight *= mix_weight;
sc->type = CLOSURE_AMBIENT_OCCLUSION_ID;
}
else {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->type = CLOSURE_AMBIENT_OCCLUSION_ID;
}
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_AMBIENT_OCCLUSION_ID;
#endif
sd->flag |= SD_AO;
}
/* Closure Nodes */
__device_inline void svm_node_closure_store_weight(ShaderData *sd, float3 weight)
{
#ifdef __MULTI_CLOSURE__
sd->closure[sd->num_closure].weight = weight;
#else
sd->closure.weight = weight;
#endif
}
__device void svm_node_closure_set_weight(ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__int_as_float(r), __int_as_float(g), __int_as_float(b));
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_emission_set_weight_total(KernelGlobals *kg, ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__int_as_float(r), __int_as_float(g), __int_as_float(b));
if(sd->object != ~0)
weight /= object_surface_area(kg, sd->object);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_closure_weight(ShaderData *sd, float *stack, uint weight_offset)
{
float3 weight = stack_load_float3(stack, weight_offset);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_emission_weight(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset = node.y;
uint strength_offset = node.z;
uint total_power = node.w;
float strength = stack_load_float(stack, strength_offset);
float3 weight = stack_load_float3(stack, color_offset)*strength;
if(total_power && sd->object != ~0)
weight /= object_surface_area(kg, sd->object);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_mix_closure(ShaderData *sd, float *stack,
uint4 node, int *offset, float *randb)
{
#ifdef __MULTI_CLOSURE__
/* fetch weight from blend input, previous mix closures,
* and write to stack to be used by closure nodes later */
uint weight_offset, in_weight_offset, weight1_offset, weight2_offset;
decode_node_uchar4(node.y, &weight_offset, &in_weight_offset, &weight1_offset, &weight2_offset);
float weight = stack_load_float(stack, weight_offset);
float in_weight = (stack_valid(in_weight_offset))? stack_load_float(stack, in_weight_offset): 1.0f;
if(stack_valid(weight1_offset))
stack_store_float(stack, weight1_offset, in_weight*(1.0f - weight));
if(stack_valid(weight2_offset))
stack_store_float(stack, weight2_offset, in_weight*weight);
#else
/* pick a closure and make the random number uniform over 0..1 again.
* closure 1 starts on the next node, for closure 2 the start is at an
* offset from the current node, so we jump */
uint weight_offset = node.y;
uint node_jump = node.z;
float weight = stack_load_float(stack, weight_offset);
weight = clamp(weight, 0.0f, 1.0f);
if(*randb < weight) {
*offset += node_jump;
*randb = *randb/weight;
}
else
*randb = (*randb - weight)/(1.0f - weight);
#endif
}
__device void svm_node_add_closure(ShaderData *sd, float *stack, uint unused,
uint node_jump, int *offset, float *randb, float *closure_weight)
{
#ifdef __MULTI_CLOSURE__
/* nothing to do, handled in compiler */
#else
/* pick one of the two closures with probability 0.5. sampling quality
* is not going to be great, for that we'd need to evaluate the weights
* of the two closures being added */
float weight = 0.5f;
if(*randb < weight) {
*offset += node_jump;
*randb = *randb/weight;
}
else
*randb = (*randb - weight)/(1.0f - weight);
*closure_weight *= 2.0f;
#endif
}
/* (Bump) normal */
__device void svm_node_set_normal(KernelGlobals *kg, ShaderData *sd, float *stack, uint in_direction, uint out_normal)
{
float3 normal = stack_load_float3(stack, in_direction);
sd->N = normal;
stack_store_float3(stack, out_normal, normal);
}
CCL_NAMESPACE_END