blender/intern/cycles/kernel/kernel_primitive.h
Brecht Van Lommel 44d1c92e60 Cycles: add ptex face ID and UV attributes.
Not the most memory efficient way to store these things but it's simple and
implementing it better requires some work to natively support subd grids as
a primitive in some way.
2013-11-28 02:11:42 +01:00

211 lines
6.5 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#ifndef __KERNEL_ATTRIBUTE_CL__
#define __KERNEL_ATTRIBUTE_CL__
CCL_NAMESPACE_BEGIN
/* attribute lookup */
ccl_device_inline int find_attribute(KernelGlobals *kg, ShaderData *sd, uint id, AttributeElement *elem)
{
if(sd->object == ~0)
return (int)ATTR_STD_NOT_FOUND;
#ifdef __OSL__
if (kg->osl) {
return OSLShader::find_attribute(kg, sd, id, elem);
}
else
#endif
{
/* for SVM, find attribute by unique id */
uint attr_offset = sd->object*kernel_data.bvh.attributes_map_stride;
#ifdef __HAIR__
attr_offset = (sd->segment == ~0)? attr_offset: attr_offset + ATTR_PRIM_CURVE;
#endif
uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
while(attr_map.x != id) {
attr_offset += ATTR_PRIM_TYPES;
attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
}
*elem = (AttributeElement)attr_map.y;
/* return result */
return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z;
}
}
ccl_device float primitive_attribute_float(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float *dx, float *dy)
{
#ifdef __HAIR__
if(sd->segment == ~0)
#endif
return triangle_attribute_float(kg, sd, elem, offset, dx, dy);
#ifdef __HAIR__
else
return curve_attribute_float(kg, sd, elem, offset, dx, dy);
#endif
}
ccl_device float3 primitive_attribute_float3(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float3 *dx, float3 *dy)
{
#ifdef __HAIR__
if(sd->segment == ~0)
#endif
return triangle_attribute_float3(kg, sd, elem, offset, dx, dy);
#ifdef __HAIR__
else
return curve_attribute_float3(kg, sd, elem, offset, dx, dy);
#endif
}
ccl_device float3 primitive_uv(KernelGlobals *kg, ShaderData *sd)
{
AttributeElement elem_uv;
int offset_uv = find_attribute(kg, sd, ATTR_STD_UV, &elem_uv);
if(offset_uv == ATTR_STD_NOT_FOUND)
return make_float3(0.0f, 0.0f, 0.0f);
float3 uv = primitive_attribute_float3(kg, sd, elem_uv, offset_uv, NULL, NULL);
uv.z = 1.0f;
return uv;
}
ccl_device bool primitive_ptex(KernelGlobals *kg, ShaderData *sd, float2 *uv, int *face_id)
{
/* storing ptex data as attributes is not memory efficient but simple for tests */
AttributeElement elem_face_id, elem_uv;
int offset_face_id = find_attribute(kg, sd, ATTR_STD_PTEX_FACE_ID, &elem_face_id);
int offset_uv = find_attribute(kg, sd, ATTR_STD_PTEX_UV, &elem_uv);
if(offset_face_id == ATTR_STD_NOT_FOUND || offset_uv == ATTR_STD_NOT_FOUND)
return false;
float3 uv3 = primitive_attribute_float3(kg, sd, elem_uv, offset_uv, NULL, NULL);
float face_id_f = primitive_attribute_float(kg, sd, elem_face_id, offset_face_id, NULL, NULL);
*uv = make_float2(uv3.x, uv3.y);
*face_id = (int)face_id_f;
return true;
}
ccl_device float3 primitive_tangent(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __HAIR__
if(sd->segment != ~0)
#ifdef __DPDU__
return normalize(sd->dPdu);
#else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
#endif
/* try to create spherical tangent from generated coordinates */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, ATTR_STD_GENERATED, &attr_elem);
if(attr_offset != ATTR_STD_NOT_FOUND) {
float3 data = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
data = make_float3(-(data.y - 0.5f), (data.x - 0.5f), 0.0f);
object_normal_transform(kg, sd, &data);
return cross(sd->N, normalize(cross(data, sd->N)));
}
else {
/* otherwise use surface derivatives */
#ifdef __DPDU__
return normalize(sd->dPdu);
#else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
}
/* motion */
ccl_device float4 primitive_motion_vector(KernelGlobals *kg, ShaderData *sd)
{
float3 motion_pre = sd->P, motion_post = sd->P;
/* deformation motion */
AttributeElement elem_pre, elem_post;
int offset_pre = find_attribute(kg, sd, ATTR_STD_MOTION_PRE, &elem_pre);
int offset_post = find_attribute(kg, sd, ATTR_STD_MOTION_POST, &elem_post);
if(offset_pre != ATTR_STD_NOT_FOUND)
motion_pre = primitive_attribute_float3(kg, sd, elem_pre, offset_pre, NULL, NULL);
if(offset_post != ATTR_STD_NOT_FOUND)
motion_post = primitive_attribute_float3(kg, sd, elem_post, offset_post, NULL, NULL);
/* object motion. note that depending on the mesh having motion vectors, this
* transformation was set match the world/object space of motion_pre/post */
Transform tfm;
tfm = object_fetch_vector_transform(kg, sd->object, OBJECT_VECTOR_MOTION_PRE);
motion_pre = transform_point(&tfm, motion_pre);
tfm = object_fetch_vector_transform(kg, sd->object, OBJECT_VECTOR_MOTION_POST);
motion_post = transform_point(&tfm, motion_post);
float3 P;
/* camera motion, for perspective/orthographic motion.pre/post will be a
* world-to-raster matrix, for panorama it's world-to-camera */
if (kernel_data.cam.type != CAMERA_PANORAMA) {
tfm = kernel_data.cam.worldtoraster;
P = transform_perspective(&tfm, sd->P);
tfm = kernel_data.cam.motion.pre;
motion_pre = transform_perspective(&tfm, motion_pre);
tfm = kernel_data.cam.motion.post;
motion_post = transform_perspective(&tfm, motion_post);
}
else {
tfm = kernel_data.cam.worldtocamera;
P = normalize(transform_point(&tfm, sd->P));
P = float2_to_float3(direction_to_panorama(kg, P));
P.x *= kernel_data.cam.width;
P.y *= kernel_data.cam.height;
tfm = kernel_data.cam.motion.pre;
motion_pre = normalize(transform_point(&tfm, motion_pre));
motion_pre = float2_to_float3(direction_to_panorama(kg, motion_pre));
motion_pre.x *= kernel_data.cam.width;
motion_pre.y *= kernel_data.cam.height;
tfm = kernel_data.cam.motion.post;
motion_post = normalize(transform_point(&tfm, motion_post));
motion_post = float2_to_float3(direction_to_panorama(kg, motion_post));
motion_post.x *= kernel_data.cam.width;
motion_post.y *= kernel_data.cam.height;
}
motion_pre = motion_pre - P;
motion_post = P - motion_post;
return make_float4(motion_pre.x, motion_pre.y, motion_post.x, motion_post.y);
}
CCL_NAMESPACE_END
#endif /* __KERNEL_ATTRIBUTE_CL__ */