blender/intern/cycles/render/camera.cpp
Sergey Sharybin cbe7f9dd03 Cycles: Pole merging for spherical stereo
The idea of pole merge is to fade interocular distance after a certain
altitude to zero when altitude goes closer to a pole. This should prevent
annoyances looking up in the sky or down to the bottom.

Works for both panorama and perspective cameras when Spherical Stereo
is enabled.

Reviewers: dfelinto, brecht

Reviewed By: brecht

Subscribers: sebastian_k

Differential Revision: https://developer.blender.org/D1998
2016-05-18 10:56:57 +02:00

588 lines
17 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "camera.h"
#include "mesh.h"
#include "object.h"
#include "scene.h"
#include "tables.h"
#include "device.h"
#include "util_foreach.h"
#include "util_function.h"
#include "util_math_cdf.h"
#include "util_vector.h"
CCL_NAMESPACE_BEGIN
static float shutter_curve_eval(float x,
float shutter_curve[RAMP_TABLE_SIZE])
{
x *= RAMP_TABLE_SIZE;
int index = (int)x;
float frac = x - index;
if(index < RAMP_TABLE_SIZE - 1) {
return lerp(shutter_curve[index], shutter_curve[index + 1], frac);
}
else {
return shutter_curve[RAMP_TABLE_SIZE - 1];
}
}
Camera::Camera()
{
shuttertime = 1.0f;
motion_position = MOTION_POSITION_CENTER;
shutter_table_offset = TABLE_OFFSET_INVALID;
aperturesize = 0.0f;
focaldistance = 10.0f;
blades = 0;
bladesrotation = 0.0f;
matrix = transform_identity();
motion.pre = transform_identity();
motion.post = transform_identity();
use_motion = false;
use_perspective_motion = false;
aperture_ratio = 1.0f;
type = CAMERA_PERSPECTIVE;
panorama_type = PANORAMA_EQUIRECTANGULAR;
fisheye_fov = M_PI_F;
fisheye_lens = 10.5f;
latitude_min = -M_PI_2_F;
latitude_max = M_PI_2_F;
longitude_min = -M_PI_F;
longitude_max = M_PI_F;
fov = M_PI_4_F;
fov_pre = fov_post = fov;
stereo_eye = STEREO_NONE;
interocular_distance = 0.065f;
convergence_distance = 30.0f * 0.065f;
use_pole_merge = false;
pole_merge_angle_from = 60.0f * M_PI_F / 180.0f;
pole_merge_angle_to = 75.0f * M_PI_F / 180.0f;
sensorwidth = 0.036f;
sensorheight = 0.024f;
nearclip = 1e-5f;
farclip = 1e5f;
width = 1024;
height = 512;
resolution = 1;
viewplane.left = -((float)width/(float)height);
viewplane.right = (float)width/(float)height;
viewplane.bottom = -1.0f;
viewplane.top = 1.0f;
screentoworld = transform_identity();
rastertoworld = transform_identity();
ndctoworld = transform_identity();
rastertocamera = transform_identity();
cameratoworld = transform_identity();
worldtoraster = transform_identity();
dx = make_float3(0.0f, 0.0f, 0.0f);
dy = make_float3(0.0f, 0.0f, 0.0f);
need_update = true;
need_device_update = true;
need_flags_update = true;
previous_need_motion = -1;
/* Initialize shutter curve. */
const int num_shutter_points = sizeof(shutter_curve) / sizeof(*shutter_curve);
for(int i = 0; i < num_shutter_points; ++i) {
shutter_curve[i] = 1.0f;
}
/* Initialize rolling shutter effect. */
rolling_shutter_type = ROLLING_SHUTTER_NONE;
rolling_shutter_duration = 0.1f;
}
Camera::~Camera()
{
}
void Camera::compute_auto_viewplane()
{
if(type == CAMERA_PANORAMA) {
viewplane.left = 0.0f;
viewplane.right = 1.0f;
viewplane.bottom = 0.0f;
viewplane.top = 1.0f;
}
else {
float aspect = (float)width/(float)height;
if(width >= height) {
viewplane.left = -aspect;
viewplane.right = aspect;
viewplane.bottom = -1.0f;
viewplane.top = 1.0f;
}
else {
viewplane.left = -1.0f;
viewplane.right = 1.0f;
viewplane.bottom = -1.0f/aspect;
viewplane.top = 1.0f/aspect;
}
}
}
void Camera::update()
{
if(!need_update)
return;
/* Full viewport to camera border in the viewport. */
Transform fulltoborder = transform_from_viewplane(viewport_camera_border);
Transform bordertofull = transform_inverse(fulltoborder);
/* ndc to raster */
Transform ndctoraster = transform_scale(width, height, 1.0f) * bordertofull;
Transform full_ndctoraster = transform_scale(full_width, full_height, 1.0f) * bordertofull;
/* raster to screen */
Transform screentondc = fulltoborder * transform_from_viewplane(viewplane);
Transform screentoraster = ndctoraster * screentondc;
Transform rastertoscreen = transform_inverse(screentoraster);
Transform full_screentoraster = full_ndctoraster * screentondc;
Transform full_rastertoscreen = transform_inverse(full_screentoraster);
/* screen to camera */
Transform cameratoscreen;
if(type == CAMERA_PERSPECTIVE)
cameratoscreen = transform_perspective(fov, nearclip, farclip);
else if(type == CAMERA_ORTHOGRAPHIC)
cameratoscreen = transform_orthographic(nearclip, farclip);
else
cameratoscreen = transform_identity();
Transform screentocamera = transform_inverse(cameratoscreen);
rastertocamera = screentocamera * rastertoscreen;
Transform full_rastertocamera = screentocamera * full_rastertoscreen;
cameratoraster = screentoraster * cameratoscreen;
cameratoworld = matrix;
screentoworld = cameratoworld * screentocamera;
rastertoworld = cameratoworld * rastertocamera;
ndctoworld = rastertoworld * ndctoraster;
/* note we recompose matrices instead of taking inverses of the above, this
* is needed to avoid inverting near degenerate matrices that happen due to
* precision issues with large scenes */
worldtocamera = transform_inverse(matrix);
worldtoscreen = cameratoscreen * worldtocamera;
worldtondc = screentondc * worldtoscreen;
worldtoraster = ndctoraster * worldtondc;
/* differentials */
if(type == CAMERA_ORTHOGRAPHIC) {
dx = transform_direction(&rastertocamera, make_float3(1, 0, 0));
dy = transform_direction(&rastertocamera, make_float3(0, 1, 0));
full_dx = transform_direction(&full_rastertocamera, make_float3(1, 0, 0));
full_dy = transform_direction(&full_rastertocamera, make_float3(0, 1, 0));
}
else if(type == CAMERA_PERSPECTIVE) {
dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
full_dx = transform_perspective(&full_rastertocamera, make_float3(1, 0, 0)) -
transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
full_dy = transform_perspective(&full_rastertocamera, make_float3(0, 1, 0)) -
transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
}
else {
dx = make_float3(0.0f, 0.0f, 0.0f);
dy = make_float3(0.0f, 0.0f, 0.0f);
}
dx = transform_direction(&cameratoworld, dx);
dy = transform_direction(&cameratoworld, dy);
full_dx = transform_direction(&cameratoworld, full_dx);
full_dy = transform_direction(&cameratoworld, full_dy);
/* TODO(sergey): Support other types of camera. */
if(type == CAMERA_PERSPECTIVE) {
/* TODO(sergey): Move to an utility function and de-duplicate with
* calculation above.
*/
Transform screentocamera_pre =
transform_inverse(transform_perspective(fov_pre,
nearclip,
farclip));
Transform screentocamera_post =
transform_inverse(transform_perspective(fov_post,
nearclip,
farclip));
perspective_motion.pre = screentocamera_pre * rastertoscreen;
perspective_motion.post = screentocamera_post * rastertoscreen;
}
need_update = false;
need_device_update = true;
need_flags_update = true;
}
void Camera::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
update();
if(previous_need_motion != need_motion) {
/* scene's motion model could have been changed since previous device
* camera update this could happen for example in case when one render
* layer has got motion pass and another not */
need_device_update = true;
}
if(!need_device_update)
return;
KernelCamera *kcam = &dscene->data.cam;
/* store matrices */
kcam->screentoworld = screentoworld;
kcam->rastertoworld = rastertoworld;
kcam->rastertocamera = rastertocamera;
kcam->cameratoworld = cameratoworld;
kcam->worldtocamera = worldtocamera;
kcam->worldtoscreen = worldtoscreen;
kcam->worldtoraster = worldtoraster;
kcam->worldtondc = worldtondc;
/* camera motion */
kcam->have_motion = 0;
kcam->have_perspective_motion = 0;
if(need_motion == Scene::MOTION_PASS) {
/* TODO(sergey): Support perspective (zoom, fov) motion. */
if(type == CAMERA_PANORAMA) {
if(use_motion) {
kcam->motion.pre = transform_inverse(motion.pre);
kcam->motion.post = transform_inverse(motion.post);
}
else {
kcam->motion.pre = kcam->worldtocamera;
kcam->motion.post = kcam->worldtocamera;
}
}
else {
if(use_motion) {
kcam->motion.pre = cameratoraster * transform_inverse(motion.pre);
kcam->motion.post = cameratoraster * transform_inverse(motion.post);
}
else {
kcam->motion.pre = worldtoraster;
kcam->motion.post = worldtoraster;
}
}
}
#ifdef __CAMERA_MOTION__
else if(need_motion == Scene::MOTION_BLUR) {
if(use_motion) {
transform_motion_decompose((DecompMotionTransform*)&kcam->motion, &motion, &matrix);
kcam->have_motion = 1;
}
if(use_perspective_motion) {
kcam->perspective_motion = perspective_motion;
kcam->have_perspective_motion = 1;
}
}
#endif
/* depth of field */
kcam->aperturesize = aperturesize;
kcam->focaldistance = focaldistance;
kcam->blades = (blades < 3)? 0.0f: blades;
kcam->bladesrotation = bladesrotation;
/* motion blur */
#ifdef __CAMERA_MOTION__
kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime: -1.0f;
scene->lookup_tables->remove_table(&shutter_table_offset);
if(need_motion == Scene::MOTION_BLUR) {
vector<float> shutter_table;
util_cdf_inverted(SHUTTER_TABLE_SIZE,
0.0f,
1.0f,
function_bind(shutter_curve_eval, _1, shutter_curve),
false,
shutter_table);
shutter_table_offset = scene->lookup_tables->add_table(dscene,
shutter_table);
kcam->shutter_table_offset = (int)shutter_table_offset;
}
#else
kcam->shuttertime = -1.0f;
#endif
/* type */
kcam->type = type;
/* anamorphic lens bokeh */
kcam->inv_aperture_ratio = 1.0f / aperture_ratio;
/* panorama */
kcam->panorama_type = panorama_type;
kcam->fisheye_fov = fisheye_fov;
kcam->fisheye_lens = fisheye_lens;
kcam->equirectangular_range = make_float4(longitude_min - longitude_max, -longitude_min,
latitude_min - latitude_max, -latitude_min + M_PI_2_F);
switch(stereo_eye) {
case STEREO_LEFT:
kcam->interocular_offset = -interocular_distance * 0.5f;
break;
case STEREO_RIGHT:
kcam->interocular_offset = interocular_distance * 0.5f;
break;
case STEREO_NONE:
default:
kcam->interocular_offset = 0.0f;
break;
}
kcam->convergence_distance = convergence_distance;
if(use_pole_merge) {
kcam->pole_merge_angle_from = pole_merge_angle_from;
kcam->pole_merge_angle_to = pole_merge_angle_to;
}
else {
kcam->pole_merge_angle_from = -1.0f;
kcam->pole_merge_angle_to = -1.0f;
}
/* sensor size */
kcam->sensorwidth = sensorwidth;
kcam->sensorheight = sensorheight;
/* render size */
kcam->width = width;
kcam->height = height;
kcam->resolution = resolution;
/* store differentials */
kcam->dx = float3_to_float4(dx);
kcam->dy = float3_to_float4(dy);
/* clipping */
kcam->nearclip = nearclip;
kcam->cliplength = (farclip == FLT_MAX)? FLT_MAX: farclip - nearclip;
/* Camera in volume. */
kcam->is_inside_volume = 0;
/* Rolling shutter effect */
kcam->rolling_shutter_type = rolling_shutter_type;
kcam->rolling_shutter_duration = rolling_shutter_duration;
previous_need_motion = need_motion;
}
void Camera::device_update_volume(Device * /*device*/,
DeviceScene *dscene,
Scene *scene)
{
if(!need_device_update && !need_flags_update) {
return;
}
KernelCamera *kcam = &dscene->data.cam;
BoundBox viewplane_boundbox = viewplane_bounds_get();
for(size_t i = 0; i < scene->objects.size(); ++i) {
Object *object = scene->objects[i];
if(object->mesh->has_volume &&
viewplane_boundbox.intersects(object->bounds))
{
/* TODO(sergey): Consider adding more grained check. */
kcam->is_inside_volume = 1;
break;
}
}
need_device_update = false;
need_flags_update = false;
}
void Camera::device_free(Device * /*device*/,
DeviceScene * /*dscene*/,
Scene *scene)
{
scene->lookup_tables->remove_table(&shutter_table_offset);
}
bool Camera::modified(const Camera& cam)
{
return !((shuttertime == cam.shuttertime) &&
(aperturesize == cam.aperturesize) &&
(blades == cam.blades) &&
(bladesrotation == cam.bladesrotation) &&
(focaldistance == cam.focaldistance) &&
(type == cam.type) &&
(fov == cam.fov) &&
(nearclip == cam.nearclip) &&
(farclip == cam.farclip) &&
(sensorwidth == cam.sensorwidth) &&
(sensorheight == cam.sensorheight) &&
// modified for progressive render
// (width == cam.width) &&
// (height == cam.height) &&
(viewplane == cam.viewplane) &&
(border == cam.border) &&
(matrix == cam.matrix) &&
(aperture_ratio == cam.aperture_ratio) &&
(panorama_type == cam.panorama_type) &&
(fisheye_fov == cam.fisheye_fov) &&
(fisheye_lens == cam.fisheye_lens) &&
(latitude_min == cam.latitude_min) &&
(latitude_max == cam.latitude_max) &&
(longitude_min == cam.longitude_min) &&
(longitude_max == cam.longitude_max) &&
(stereo_eye == cam.stereo_eye));
}
bool Camera::motion_modified(const Camera& cam)
{
return !((motion == cam.motion) &&
(use_motion == cam.use_motion));
}
void Camera::tag_update()
{
need_update = true;
}
float3 Camera::transform_raster_to_world(float raster_x, float raster_y)
{
float3 D, P;
if(type == CAMERA_PERSPECTIVE) {
D = transform_perspective(&rastertocamera,
make_float3(raster_x, raster_y, 0.0f));
float3 Pclip = normalize(D);
P = make_float3(0.0f, 0.0f, 0.0f);
/* TODO(sergey): Aperture support? */
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
/* TODO(sergey): Clipping is conditional in kernel, and hence it could
* be mistakes in here, currently leading to wrong camera-in-volume
* detection.
*/
P += nearclip * D / Pclip.z;
}
else if(type == CAMERA_ORTHOGRAPHIC) {
D = make_float3(0.0f, 0.0f, 1.0f);
/* TODO(sergey): Aperture support? */
P = transform_perspective(&rastertocamera,
make_float3(raster_x, raster_y, 0.0f));
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
}
else {
assert(!"unsupported camera type");
}
return P;
}
BoundBox Camera::viewplane_bounds_get()
{
/* TODO(sergey): This is all rather stupid, but is there a way to perform
* checks we need in a more clear and smart fasion?
*/
BoundBox bounds = BoundBox::empty;
if(type == CAMERA_PANORAMA) {
if(use_spherical_stereo == false) {
bounds.grow(make_float3(cameratoworld.x.w,
cameratoworld.y.w,
cameratoworld.z.w));
}
else {
float half_eye_distance = interocular_distance * 0.5f;
bounds.grow(make_float3(cameratoworld.x.w + half_eye_distance,
cameratoworld.y.w,
cameratoworld.z.w));
bounds.grow(make_float3(cameratoworld.z.w,
cameratoworld.y.w + half_eye_distance,
cameratoworld.z.w));
bounds.grow(make_float3(cameratoworld.x.w - half_eye_distance,
cameratoworld.y.w,
cameratoworld.z.w));
bounds.grow(make_float3(cameratoworld.x.w,
cameratoworld.y.w - half_eye_distance,
cameratoworld.z.w));
}
}
else {
bounds.grow(transform_raster_to_world(0.0f, 0.0f));
bounds.grow(transform_raster_to_world(0.0f, (float)height));
bounds.grow(transform_raster_to_world((float)width, (float)height));
bounds.grow(transform_raster_to_world((float)width, 0.0f));
if(type == CAMERA_PERSPECTIVE) {
/* Center point has the most distance in local Z axis,
* use it to construct bounding box/
*/
bounds.grow(transform_raster_to_world(0.5f*width, 0.5f*height));
}
}
return bounds;
}
float Camera::world_to_raster_size(float3 P)
{
if(type == CAMERA_ORTHOGRAPHIC) {
return min(len(full_dx), len(full_dy));
}
else if(type == CAMERA_PERSPECTIVE) {
/* Calculate as if point is directly ahead of the camera. */
float3 raster = make_float3(0.5f*width, 0.5f*height, 0.0f);
float3 Pcamera = transform_perspective(&rastertocamera, raster);
/* dDdx */
float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
float3 dx = len_squared(full_dx) < len_squared(full_dy) ? full_dx : full_dy;
float3 dDdx = normalize(Ddiff + dx) - normalize(Ddiff);
/* dPdx */
float dist = len(transform_point(&worldtocamera, P));
float3 D = normalize(Ddiff);
return len(dist*dDdx - dot(dist*dDdx, D)*D);
}
else {
// TODO(mai): implement for CAMERA_PANORAMA
assert(!"pixel width calculation for panoramic projection not implemented yet");
}
return 1.0f;
}
CCL_NAMESPACE_END