blender/source/gameengine/Ketsji/KX_ObjectActuator.cpp
2011-09-03 02:15:49 +00:00

647 lines
19 KiB
C++

/*
* Do translation/rotation actions
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Ketsji/KX_ObjectActuator.cpp
* \ingroup ketsji
*/
#include "KX_ObjectActuator.h"
#include "KX_GameObject.h"
#include "KX_PyMath.h" // For PyVecTo - should this include be put in PyObjectPlus?
#include "KX_IPhysicsController.h"
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_ObjectActuator::
KX_ObjectActuator(
SCA_IObject* gameobj,
KX_GameObject* refobj,
const MT_Vector3& force,
const MT_Vector3& torque,
const MT_Vector3& dloc,
const MT_Vector3& drot,
const MT_Vector3& linV,
const MT_Vector3& angV,
const short damping,
const KX_LocalFlags& flag
) :
SCA_IActuator(gameobj, KX_ACT_OBJECT),
m_force(force),
m_torque(torque),
m_dloc(dloc),
m_drot(drot),
m_linear_velocity(linV),
m_angular_velocity(angV),
m_linear_length2(0.0),
m_current_linear_factor(0.0),
m_current_angular_factor(0.0),
m_damping(damping),
m_previous_error(0.0,0.0,0.0),
m_error_accumulator(0.0,0.0,0.0),
m_bitLocalFlag (flag),
m_reference(refobj),
m_active_combined_velocity (false),
m_linear_damping_active(false),
m_angular_damping_active(false)
{
if (m_bitLocalFlag.ServoControl)
{
// in servo motion, the force is local if the target velocity is local
m_bitLocalFlag.Force = m_bitLocalFlag.LinearVelocity;
m_pid = m_torque;
}
if (m_reference)
m_reference->RegisterActuator(this);
UpdateFuzzyFlags();
}
KX_ObjectActuator::~KX_ObjectActuator()
{
if (m_reference)
m_reference->UnregisterActuator(this);
}
bool KX_ObjectActuator::Update()
{
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent());
if (bNegativeEvent) {
// If we previously set the linear velocity we now have to inform
// the physics controller that we no longer wish to apply it and that
// it should reconcile the externally set velocity with it's
// own velocity.
if (m_active_combined_velocity) {
if (parent)
parent->ResolveCombinedVelocities(
m_linear_velocity,
m_angular_velocity,
(m_bitLocalFlag.LinearVelocity) != 0,
(m_bitLocalFlag.AngularVelocity) != 0
);
m_active_combined_velocity = false;
}
m_linear_damping_active = false;
m_angular_damping_active = false;
m_error_accumulator.setValue(0.0,0.0,0.0);
m_previous_error.setValue(0.0,0.0,0.0);
return false;
} else if (parent)
{
if (m_bitLocalFlag.ServoControl)
{
// In this mode, we try to reach a target speed using force
// As we don't know the friction, we must implement a generic
// servo control to achieve the speed in a configurable
// v = current velocity
// V = target velocity
// e = V-v = speed error
// dt = time interval since previous update
// I = sum(e(t)*dt)
// dv = e(t) - e(t-1)
// KP, KD, KI : coefficient
// F = KP*e+KI*I+KD*dv
MT_Scalar mass = parent->GetMass();
if (mass < MT_EPSILON)
return false;
MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
if (m_reference)
{
const MT_Point3& mypos = parent->NodeGetWorldPosition();
const MT_Point3& refpos = m_reference->NodeGetWorldPosition();
MT_Point3 relpos;
relpos = (mypos-refpos);
MT_Vector3 vel= m_reference->GetVelocity(relpos);
if (m_bitLocalFlag.LinearVelocity)
// must convert in local space
vel = parent->NodeGetWorldOrientation().transposed()*vel;
v -= vel;
}
MT_Vector3 e = m_linear_velocity - v;
MT_Vector3 dv = e - m_previous_error;
MT_Vector3 I = m_error_accumulator + e;
m_force = m_pid.x()*e+m_pid.y()*I+m_pid.z()*dv;
// to automatically adapt the PID coefficient to mass;
m_force *= mass;
if (m_bitLocalFlag.Torque)
{
if (m_force[0] > m_dloc[0])
{
m_force[0] = m_dloc[0];
I[0] = m_error_accumulator[0];
} else if (m_force[0] < m_drot[0])
{
m_force[0] = m_drot[0];
I[0] = m_error_accumulator[0];
}
}
if (m_bitLocalFlag.DLoc)
{
if (m_force[1] > m_dloc[1])
{
m_force[1] = m_dloc[1];
I[1] = m_error_accumulator[1];
} else if (m_force[1] < m_drot[1])
{
m_force[1] = m_drot[1];
I[1] = m_error_accumulator[1];
}
}
if (m_bitLocalFlag.DRot)
{
if (m_force[2] > m_dloc[2])
{
m_force[2] = m_dloc[2];
I[2] = m_error_accumulator[2];
} else if (m_force[2] < m_drot[2])
{
m_force[2] = m_drot[2];
I[2] = m_error_accumulator[2];
}
}
m_previous_error = e;
m_error_accumulator = I;
parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0);
} else
{
if (!m_bitLocalFlag.ZeroForce)
{
parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0);
}
if (!m_bitLocalFlag.ZeroTorque)
{
parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0);
}
if (!m_bitLocalFlag.ZeroDLoc)
{
parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0);
}
if (!m_bitLocalFlag.ZeroDRot)
{
parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
}
if (!m_bitLocalFlag.ZeroLinearVelocity)
{
if (m_bitLocalFlag.AddOrSetLinV) {
parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
} else {
m_active_combined_velocity = true;
if (m_damping > 0) {
MT_Vector3 linV;
if (!m_linear_damping_active) {
// delta and the start speed (depends on the existing speed in that direction)
linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
// keep only the projection along the desired direction
m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2;
m_linear_damping_active = true;
}
if (m_current_linear_factor < 1.0)
m_current_linear_factor += 1.0/m_damping;
if (m_current_linear_factor > 1.0)
m_current_linear_factor = 1.0;
linV = m_current_linear_factor * m_linear_velocity;
parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0);
} else {
parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
}
}
}
if (!m_bitLocalFlag.ZeroAngularVelocity)
{
m_active_combined_velocity = true;
if (m_damping > 0) {
MT_Vector3 angV;
if (!m_angular_damping_active) {
// delta and the start speed (depends on the existing speed in that direction)
angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity);
// keep only the projection along the desired direction
m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2;
m_angular_damping_active = true;
}
if (m_current_angular_factor < 1.0)
m_current_angular_factor += 1.0/m_damping;
if (m_current_angular_factor > 1.0)
m_current_angular_factor = 1.0;
angV = m_current_angular_factor * m_angular_velocity;
parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0);
} else {
parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0);
}
}
}
}
return true;
}
CValue* KX_ObjectActuator::GetReplica()
{
KX_ObjectActuator* replica = new KX_ObjectActuator(*this);//m_float,GetName());
replica->ProcessReplica();
return replica;
}
void KX_ObjectActuator::ProcessReplica()
{
SCA_IActuator::ProcessReplica();
if (m_reference)
m_reference->RegisterActuator(this);
}
bool KX_ObjectActuator::UnlinkObject(SCA_IObject* clientobj)
{
if (clientobj == (SCA_IObject*)m_reference)
{
// this object is being deleted, we cannot continue to use it as reference.
m_reference = NULL;
return true;
}
return false;
}
void KX_ObjectActuator::Relink(CTR_Map<CTR_HashedPtr, void*> *obj_map)
{
void **h_obj = (*obj_map)[m_reference];
if (h_obj) {
if (m_reference)
m_reference->UnregisterActuator(this);
m_reference = (KX_GameObject*)(*h_obj);
m_reference->RegisterActuator(this);
}
}
/* some 'standard' utilities... */
bool KX_ObjectActuator::isValid(KX_ObjectActuator::KX_OBJECT_ACT_VEC_TYPE type)
{
bool res = false;
res = (type > KX_OBJECT_ACT_NODEF) && (type < KX_OBJECT_ACT_MAX);
return res;
}
#ifdef WITH_PYTHON
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_ObjectActuator::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"KX_ObjectActuator",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0,0,0,0,0,0,0,0,0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0,0,0,0,0,0,0,
Methods,
0,
0,
&SCA_IActuator::Type,
0,0,0,0,0,0,
py_base_new
};
PyMethodDef KX_ObjectActuator::Methods[] = {
{NULL,NULL} //Sentinel
};
PyAttributeDef KX_ObjectActuator::Attributes[] = {
KX_PYATTRIBUTE_VECTOR_RW_CHECK("force", -1000, 1000, false, KX_ObjectActuator, m_force, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_BOOL_RW("useLocalForce", KX_ObjectActuator, m_bitLocalFlag.Force),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("torque", -1000, 1000, false, KX_ObjectActuator, m_torque, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_BOOL_RW("useLocalTorque", KX_ObjectActuator, m_bitLocalFlag.Torque),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("dLoc", -1000, 1000, false, KX_ObjectActuator, m_dloc, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_BOOL_RW("useLocalDLoc", KX_ObjectActuator, m_bitLocalFlag.DLoc),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("dRot", -1000, 1000, false, KX_ObjectActuator, m_drot, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_BOOL_RW("useLocalDRot", KX_ObjectActuator, m_bitLocalFlag.DRot),
#ifdef USE_MATHUTILS
KX_PYATTRIBUTE_RW_FUNCTION("linV", KX_ObjectActuator, pyattr_get_linV, pyattr_set_linV),
KX_PYATTRIBUTE_RW_FUNCTION("angV", KX_ObjectActuator, pyattr_get_angV, pyattr_set_angV),
#else
KX_PYATTRIBUTE_VECTOR_RW_CHECK("linV", -1000, 1000, false, KX_ObjectActuator, m_linear_velocity, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("angV", -1000, 1000, false, KX_ObjectActuator, m_angular_velocity, PyUpdateFuzzyFlags),
#endif
KX_PYATTRIBUTE_BOOL_RW("useLocalLinV", KX_ObjectActuator, m_bitLocalFlag.LinearVelocity),
KX_PYATTRIBUTE_BOOL_RW("useLocalAngV", KX_ObjectActuator, m_bitLocalFlag.AngularVelocity),
KX_PYATTRIBUTE_SHORT_RW("damping", 0, 1000, false, KX_ObjectActuator, m_damping),
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitX", KX_ObjectActuator, pyattr_get_forceLimitX, pyattr_set_forceLimitX),
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitY", KX_ObjectActuator, pyattr_get_forceLimitY, pyattr_set_forceLimitY),
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitZ", KX_ObjectActuator, pyattr_get_forceLimitZ, pyattr_set_forceLimitZ),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("pid", -100, 200, true, KX_ObjectActuator, m_pid, PyCheckPid),
KX_PYATTRIBUTE_RW_FUNCTION("reference", KX_ObjectActuator,pyattr_get_reference,pyattr_set_reference),
{ NULL } //Sentinel
};
/* Attribute get/set functions */
#ifdef USE_MATHUTILS
/* These require an SGNode */
#define MATHUTILS_VEC_CB_LINV 1
#define MATHUTILS_VEC_CB_ANGV 2
static int mathutils_kxobactu_vector_cb_index= -1; /* index for our callbacks */
static int mathutils_obactu_generic_check(BaseMathObject *bmo)
{
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>BGE_PROXY_REF(bmo->cb_user);
if(self==NULL)
return -1;
return 0;
}
static int mathutils_obactu_vector_get(BaseMathObject *bmo, int subtype)
{
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>BGE_PROXY_REF(bmo->cb_user);
if(self==NULL)
return -1;
switch(subtype) {
case MATHUTILS_VEC_CB_LINV:
self->m_linear_velocity.getValue(bmo->data);
break;
case MATHUTILS_VEC_CB_ANGV:
self->m_angular_velocity.getValue(bmo->data);
break;
}
return 0;
}
static int mathutils_obactu_vector_set(BaseMathObject *bmo, int subtype)
{
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>BGE_PROXY_REF(bmo->cb_user);
if(self==NULL)
return -1;
switch(subtype) {
case MATHUTILS_VEC_CB_LINV:
self->m_linear_velocity.setValue(bmo->data);
break;
case MATHUTILS_VEC_CB_ANGV:
self->m_angular_velocity.setValue(bmo->data);
break;
}
return 0;
}
static int mathutils_obactu_vector_get_index(BaseMathObject *bmo, int subtype, int index)
{
/* lazy, avoid repeteing the case statement */
if(mathutils_obactu_vector_get(bmo, subtype) == -1)
return -1;
return 0;
}
static int mathutils_obactu_vector_set_index(BaseMathObject *bmo, int subtype, int index)
{
float f= bmo->data[index];
/* lazy, avoid repeteing the case statement */
if(mathutils_obactu_vector_get(bmo, subtype) == -1)
return -1;
bmo->data[index]= f;
return mathutils_obactu_vector_set(bmo, subtype);
}
Mathutils_Callback mathutils_obactu_vector_cb = {
mathutils_obactu_generic_check,
mathutils_obactu_vector_get,
mathutils_obactu_vector_set,
mathutils_obactu_vector_get_index,
mathutils_obactu_vector_set_index
};
PyObject* KX_ObjectActuator::pyattr_get_linV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
return newVectorObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxobactu_vector_cb_index, MATHUTILS_VEC_CB_LINV);
}
int KX_ObjectActuator::pyattr_set_linV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>(self_v);
if (!PyVecTo(value, self->m_linear_velocity))
return PY_SET_ATTR_FAIL;
self->UpdateFuzzyFlags();
return PY_SET_ATTR_SUCCESS;
}
PyObject* KX_ObjectActuator::pyattr_get_angV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
return newVectorObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxobactu_vector_cb_index, MATHUTILS_VEC_CB_ANGV);
}
int KX_ObjectActuator::pyattr_set_angV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>(self_v);
if (!PyVecTo(value, self->m_angular_velocity))
return PY_SET_ATTR_FAIL;
self->UpdateFuzzyFlags();
return PY_SET_ATTR_SUCCESS;
}
void KX_ObjectActuator_Mathutils_Callback_Init(void)
{
// register mathutils callbacks, ok to run more then once.
mathutils_kxobactu_vector_cb_index= Mathutils_RegisterCallback(&mathutils_obactu_vector_cb);
}
#endif // USE_MATHUTILS
PyObject* KX_ObjectActuator::pyattr_get_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *retVal = PyList_New(3);
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[0]));
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[0]));
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.Torque));
return retVal;
}
int KX_ObjectActuator::pyattr_set_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject* seq = PySequence_Fast(value, "");
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
{
self->m_drot[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
self->m_dloc[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
self->m_bitLocalFlag.Torque = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0);
if (!PyErr_Occurred())
{
Py_DECREF(seq);
return PY_SET_ATTR_SUCCESS;
}
}
Py_XDECREF(seq);
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
return PY_SET_ATTR_FAIL;
}
PyObject* KX_ObjectActuator::pyattr_get_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *retVal = PyList_New(3);
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[1]));
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[1]));
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DLoc));
return retVal;
}
int KX_ObjectActuator::pyattr_set_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject* seq = PySequence_Fast(value, "");
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
{
self->m_drot[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
self->m_dloc[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
self->m_bitLocalFlag.DLoc = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0);
if (!PyErr_Occurred())
{
Py_DECREF(seq);
return PY_SET_ATTR_SUCCESS;
}
}
Py_XDECREF(seq);
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
return PY_SET_ATTR_FAIL;
}
PyObject* KX_ObjectActuator::pyattr_get_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *retVal = PyList_New(3);
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[2]));
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[2]));
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DRot));
return retVal;
}
int KX_ObjectActuator::pyattr_set_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject* seq = PySequence_Fast(value, "");
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
{
self->m_drot[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
self->m_dloc[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
self->m_bitLocalFlag.DRot = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0);
if (!PyErr_Occurred())
{
Py_DECREF(seq);
return PY_SET_ATTR_SUCCESS;
}
}
Py_XDECREF(seq);
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
return PY_SET_ATTR_FAIL;
}
PyObject* KX_ObjectActuator::pyattr_get_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ObjectActuator* actuator = static_cast<KX_ObjectActuator*>(self);
if (!actuator->m_reference)
Py_RETURN_NONE;
return actuator->m_reference->GetProxy();
}
int KX_ObjectActuator::pyattr_set_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* actuator = static_cast<KX_ObjectActuator*>(self);
KX_GameObject *refOb;
if (!ConvertPythonToGameObject(value, &refOb, true, "actu.reference = value: KX_ObjectActuator"))
return PY_SET_ATTR_FAIL;
if (actuator->m_reference)
actuator->m_reference->UnregisterActuator(actuator);
if(refOb==NULL) {
actuator->m_reference= NULL;
}
else {
actuator->m_reference = refOb;
actuator->m_reference->RegisterActuator(actuator);
}
return PY_SET_ATTR_SUCCESS;
}
#endif // WITH_PYTHON
/* eof */