blender/intern/cycles/bvh/split.cpp
Brecht Van Lommel 35b1e9fc3a Cycles: pointcloud rendering
This add support for rendering of the point cloud object in Blender, as a native
geometry type in Cycles that is more memory and time efficient than instancing
sphere meshes. This can be useful for rendering sand, water splashes, particles,
motion graphics, etc.

Points are currently always rendered as spheres, with backface culling. More
shapes are likely to be added later, but this is the most important one and can
be customized with shaders.

For CPU rendering the Embree primitive is used, for GPU there is our own
intersection code. Motion blur is suppored. Volumes inside points are not
currently supported.

Implemented with help from:
* Kévin Dietrich: Alembic procedural integration
* Patrick Mourse: OptiX integration
* Josh Whelchel: update for cycles-x changes

Ref T92573

Differential Revision: https://developer.blender.org/D9887
2021-12-16 20:54:04 +01:00

567 lines
20 KiB
C++

/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh/split.h"
#include "bvh/build.h"
#include "bvh/sort.h"
#include "scene/hair.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/pointcloud.h"
#include "util/algorithm.h"
CCL_NAMESPACE_BEGIN
/* Object Split */
BVHObjectSplit::BVHObjectSplit(BVHBuild *builder,
BVHSpatialStorage *storage,
const BVHRange &range,
vector<BVHReference> &references,
float nodeSAH,
const BVHUnaligned *unaligned_heuristic,
const Transform *aligned_space)
: sah(FLT_MAX),
dim(0),
num_left(0),
left_bounds(BoundBox::empty),
right_bounds(BoundBox::empty),
storage_(storage),
references_(&references),
unaligned_heuristic_(unaligned_heuristic),
aligned_space_(aligned_space)
{
const BVHReference *ref_ptr = &references_->at(range.start());
float min_sah = FLT_MAX;
storage_->right_bounds.resize(range.size());
for (int dim = 0; dim < 3; dim++) {
/* Sort references. */
bvh_reference_sort(range.start(),
range.end(),
&references_->at(0),
dim,
unaligned_heuristic_,
aligned_space_);
/* sweep right to left and determine bounds. */
BoundBox right_bounds = BoundBox::empty;
for (int i = range.size() - 1; i > 0; i--) {
BoundBox prim_bounds = get_prim_bounds(ref_ptr[i]);
right_bounds.grow(prim_bounds);
storage_->right_bounds[i - 1] = right_bounds;
}
/* sweep left to right and select lowest SAH. */
BoundBox left_bounds = BoundBox::empty;
for (int i = 1; i < range.size(); i++) {
BoundBox prim_bounds = get_prim_bounds(ref_ptr[i - 1]);
left_bounds.grow(prim_bounds);
right_bounds = storage_->right_bounds[i - 1];
float sah = nodeSAH + left_bounds.safe_area() * builder->params.primitive_cost(i) +
right_bounds.safe_area() * builder->params.primitive_cost(range.size() - i);
if (sah < min_sah) {
min_sah = sah;
this->sah = sah;
this->dim = dim;
this->num_left = i;
this->left_bounds = left_bounds;
this->right_bounds = right_bounds;
}
}
}
}
void BVHObjectSplit::split(BVHRange &left, BVHRange &right, const BVHRange &range)
{
assert(references_->size() > 0);
/* sort references according to split */
bvh_reference_sort(range.start(),
range.end(),
&references_->at(0),
this->dim,
unaligned_heuristic_,
aligned_space_);
BoundBox effective_left_bounds, effective_right_bounds;
const int num_right = range.size() - this->num_left;
if (aligned_space_ == NULL) {
effective_left_bounds = left_bounds;
effective_right_bounds = right_bounds;
}
else {
effective_left_bounds = BoundBox::empty;
effective_right_bounds = BoundBox::empty;
for (int i = 0; i < this->num_left; ++i) {
BoundBox prim_boundbox = references_->at(range.start() + i).bounds();
effective_left_bounds.grow(prim_boundbox);
}
for (int i = 0; i < num_right; ++i) {
BoundBox prim_boundbox = references_->at(range.start() + this->num_left + i).bounds();
effective_right_bounds.grow(prim_boundbox);
}
}
/* split node ranges */
left = BVHRange(effective_left_bounds, range.start(), this->num_left);
right = BVHRange(effective_right_bounds, left.end(), num_right);
}
/* Spatial Split */
BVHSpatialSplit::BVHSpatialSplit(const BVHBuild &builder,
BVHSpatialStorage *storage,
const BVHRange &range,
vector<BVHReference> &references,
float nodeSAH,
const BVHUnaligned *unaligned_heuristic,
const Transform *aligned_space)
: sah(FLT_MAX),
dim(0),
pos(0.0f),
storage_(storage),
references_(&references),
unaligned_heuristic_(unaligned_heuristic),
aligned_space_(aligned_space)
{
/* initialize bins. */
BoundBox range_bounds;
if (aligned_space == NULL) {
range_bounds = range.bounds();
}
else {
range_bounds = unaligned_heuristic->compute_aligned_boundbox(
range, &references_->at(0), *aligned_space);
}
float3 origin = range_bounds.min;
float3 binSize = (range_bounds.max - origin) * (1.0f / (float)BVHParams::NUM_SPATIAL_BINS);
float3 invBinSize = 1.0f / binSize;
for (int dim = 0; dim < 3; dim++) {
for (int i = 0; i < BVHParams::NUM_SPATIAL_BINS; i++) {
BVHSpatialBin &bin = storage_->bins[dim][i];
bin.bounds = BoundBox::empty;
bin.enter = 0;
bin.exit = 0;
}
}
/* chop references into bins. */
for (unsigned int refIdx = range.start(); refIdx < range.end(); refIdx++) {
const BVHReference &ref = references_->at(refIdx);
BoundBox prim_bounds = get_prim_bounds(ref);
float3 firstBinf = (prim_bounds.min - origin) * invBinSize;
float3 lastBinf = (prim_bounds.max - origin) * invBinSize;
int3 firstBin = make_int3((int)firstBinf.x, (int)firstBinf.y, (int)firstBinf.z);
int3 lastBin = make_int3((int)lastBinf.x, (int)lastBinf.y, (int)lastBinf.z);
firstBin = clamp(firstBin, 0, BVHParams::NUM_SPATIAL_BINS - 1);
lastBin = clamp(lastBin, firstBin, BVHParams::NUM_SPATIAL_BINS - 1);
for (int dim = 0; dim < 3; dim++) {
BVHReference currRef(
get_prim_bounds(ref), ref.prim_index(), ref.prim_object(), ref.prim_type());
for (int i = firstBin[dim]; i < lastBin[dim]; i++) {
BVHReference leftRef, rightRef;
split_reference(
builder, leftRef, rightRef, currRef, dim, origin[dim] + binSize[dim] * (float)(i + 1));
storage_->bins[dim][i].bounds.grow(leftRef.bounds());
currRef = rightRef;
}
storage_->bins[dim][lastBin[dim]].bounds.grow(currRef.bounds());
storage_->bins[dim][firstBin[dim]].enter++;
storage_->bins[dim][lastBin[dim]].exit++;
}
}
/* select best split plane. */
storage_->right_bounds.resize(BVHParams::NUM_SPATIAL_BINS);
for (int dim = 0; dim < 3; dim++) {
/* sweep right to left and determine bounds. */
BoundBox right_bounds = BoundBox::empty;
for (int i = BVHParams::NUM_SPATIAL_BINS - 1; i > 0; i--) {
right_bounds.grow(storage_->bins[dim][i].bounds);
storage_->right_bounds[i - 1] = right_bounds;
}
/* sweep left to right and select lowest SAH. */
BoundBox left_bounds = BoundBox::empty;
int leftNum = 0;
int rightNum = range.size();
for (int i = 1; i < BVHParams::NUM_SPATIAL_BINS; i++) {
left_bounds.grow(storage_->bins[dim][i - 1].bounds);
leftNum += storage_->bins[dim][i - 1].enter;
rightNum -= storage_->bins[dim][i - 1].exit;
float sah = nodeSAH + left_bounds.safe_area() * builder.params.primitive_cost(leftNum) +
storage_->right_bounds[i - 1].safe_area() *
builder.params.primitive_cost(rightNum);
if (sah < this->sah) {
this->sah = sah;
this->dim = dim;
this->pos = origin[dim] + binSize[dim] * (float)i;
}
}
}
}
void BVHSpatialSplit::split(BVHBuild *builder,
BVHRange &left,
BVHRange &right,
const BVHRange &range)
{
/* Categorize references and compute bounds.
*
* Left-hand side: [left_start, left_end[
* Uncategorized/split: [left_end, right_start[
* Right-hand side: [right_start, refs.size()[ */
vector<BVHReference> &refs = *references_;
int left_start = range.start();
int left_end = left_start;
int right_start = range.end();
int right_end = range.end();
BoundBox left_bounds = BoundBox::empty;
BoundBox right_bounds = BoundBox::empty;
for (int i = left_end; i < right_start; i++) {
BoundBox prim_bounds = get_prim_bounds(refs[i]);
if (prim_bounds.max[this->dim] <= this->pos) {
/* entirely on the left-hand side */
left_bounds.grow(prim_bounds);
swap(refs[i], refs[left_end++]);
}
else if (prim_bounds.min[this->dim] >= this->pos) {
/* entirely on the right-hand side */
right_bounds.grow(prim_bounds);
swap(refs[i--], refs[--right_start]);
}
}
/* Duplicate or unsplit references intersecting both sides.
*
* Duplication happens into a temporary pre-allocated vector in order to
* reduce number of memmove() calls happening in vector.insert().
*/
vector<BVHReference> &new_refs = storage_->new_references;
new_refs.clear();
new_refs.reserve(right_start - left_end);
while (left_end < right_start) {
/* split reference. */
BVHReference curr_ref(get_prim_bounds(refs[left_end]),
refs[left_end].prim_index(),
refs[left_end].prim_object(),
refs[left_end].prim_type());
BVHReference lref, rref;
split_reference(*builder, lref, rref, curr_ref, this->dim, this->pos);
/* compute SAH for duplicate/unsplit candidates. */
BoundBox lub = left_bounds; // Unsplit to left: new left-hand bounds.
BoundBox rub = right_bounds; // Unsplit to right: new right-hand bounds.
BoundBox ldb = left_bounds; // Duplicate: new left-hand bounds.
BoundBox rdb = right_bounds; // Duplicate: new right-hand bounds.
lub.grow(curr_ref.bounds());
rub.grow(curr_ref.bounds());
ldb.grow(lref.bounds());
rdb.grow(rref.bounds());
float lac = builder->params.primitive_cost(left_end - left_start);
float rac = builder->params.primitive_cost(right_end - right_start);
float lbc = builder->params.primitive_cost(left_end - left_start + 1);
float rbc = builder->params.primitive_cost(right_end - right_start + 1);
float unsplitLeftSAH = lub.safe_area() * lbc + right_bounds.safe_area() * rac;
float unsplitRightSAH = left_bounds.safe_area() * lac + rub.safe_area() * rbc;
float duplicateSAH = ldb.safe_area() * lbc + rdb.safe_area() * rbc;
float minSAH = min(min(unsplitLeftSAH, unsplitRightSAH), duplicateSAH);
if (minSAH == unsplitLeftSAH) {
/* unsplit to left */
left_bounds = lub;
left_end++;
}
else if (minSAH == unsplitRightSAH) {
/* unsplit to right */
right_bounds = rub;
swap(refs[left_end], refs[--right_start]);
}
else {
/* duplicate */
left_bounds = ldb;
right_bounds = rdb;
refs[left_end++] = lref;
new_refs.push_back(rref);
right_end++;
}
}
/* Insert duplicated references into actual array in one go. */
if (new_refs.size() != 0) {
refs.insert(refs.begin() + (right_end - new_refs.size()), new_refs.begin(), new_refs.end());
}
if (aligned_space_ != NULL) {
left_bounds = right_bounds = BoundBox::empty;
for (int i = left_start; i < left_end - left_start; ++i) {
BoundBox prim_boundbox = references_->at(i).bounds();
left_bounds.grow(prim_boundbox);
}
for (int i = right_start; i < right_end - right_start; ++i) {
BoundBox prim_boundbox = references_->at(i).bounds();
right_bounds.grow(prim_boundbox);
}
}
left = BVHRange(left_bounds, left_start, left_end - left_start);
right = BVHRange(right_bounds, right_start, right_end - right_start);
}
void BVHSpatialSplit::split_triangle_primitive(const Mesh *mesh,
const Transform *tfm,
int prim_index,
int dim,
float pos,
BoundBox &left_bounds,
BoundBox &right_bounds)
{
Mesh::Triangle t = mesh->get_triangle(prim_index);
const float3 *verts = &mesh->verts[0];
float3 v1 = tfm ? transform_point(tfm, verts[t.v[2]]) : verts[t.v[2]];
v1 = get_unaligned_point(v1);
for (int i = 0; i < 3; i++) {
float3 v0 = v1;
int vindex = t.v[i];
v1 = tfm ? transform_point(tfm, verts[vindex]) : verts[vindex];
v1 = get_unaligned_point(v1);
float v0p = v0[dim];
float v1p = v1[dim];
/* insert vertex to the boxes it belongs to. */
if (v0p <= pos)
left_bounds.grow(v0);
if (v0p >= pos)
right_bounds.grow(v0);
/* edge intersects the plane => insert intersection to both boxes. */
if ((v0p < pos && v1p > pos) || (v0p > pos && v1p < pos)) {
float3 t = lerp(v0, v1, clamp((pos - v0p) / (v1p - v0p), 0.0f, 1.0f));
left_bounds.grow(t);
right_bounds.grow(t);
}
}
}
void BVHSpatialSplit::split_curve_primitive(const Hair *hair,
const Transform *tfm,
int prim_index,
int segment_index,
int dim,
float pos,
BoundBox &left_bounds,
BoundBox &right_bounds)
{
/* curve split: NOTE - Currently ignores curve width and needs to be fixed. */
Hair::Curve curve = hair->get_curve(prim_index);
const int k0 = curve.first_key + segment_index;
const int k1 = k0 + 1;
float3 v0 = hair->get_curve_keys()[k0];
float3 v1 = hair->get_curve_keys()[k1];
if (tfm != NULL) {
v0 = transform_point(tfm, v0);
v1 = transform_point(tfm, v1);
}
v0 = get_unaligned_point(v0);
v1 = get_unaligned_point(v1);
float v0p = v0[dim];
float v1p = v1[dim];
/* insert vertex to the boxes it belongs to. */
if (v0p <= pos)
left_bounds.grow(v0);
if (v0p >= pos)
right_bounds.grow(v0);
if (v1p <= pos)
left_bounds.grow(v1);
if (v1p >= pos)
right_bounds.grow(v1);
/* edge intersects the plane => insert intersection to both boxes. */
if ((v0p < pos && v1p > pos) || (v0p > pos && v1p < pos)) {
float3 t = lerp(v0, v1, clamp((pos - v0p) / (v1p - v0p), 0.0f, 1.0f));
left_bounds.grow(t);
right_bounds.grow(t);
}
}
void BVHSpatialSplit::split_point_primitive(const PointCloud *pointcloud,
const Transform *tfm,
int prim_index,
int dim,
float pos,
BoundBox &left_bounds,
BoundBox &right_bounds)
{
/* No real splitting support for points, assume they are small enough for it
* not to matter. */
float3 point = pointcloud->get_points()[prim_index];
if (tfm != NULL) {
point = transform_point(tfm, point);
}
point = get_unaligned_point(point);
if (point[dim] <= pos) {
left_bounds.grow(point);
}
if (point[dim] >= pos) {
right_bounds.grow(point);
}
}
void BVHSpatialSplit::split_triangle_reference(const BVHReference &ref,
const Mesh *mesh,
int dim,
float pos,
BoundBox &left_bounds,
BoundBox &right_bounds)
{
split_triangle_primitive(mesh, NULL, ref.prim_index(), dim, pos, left_bounds, right_bounds);
}
void BVHSpatialSplit::split_curve_reference(const BVHReference &ref,
const Hair *hair,
int dim,
float pos,
BoundBox &left_bounds,
BoundBox &right_bounds)
{
split_curve_primitive(hair,
NULL,
ref.prim_index(),
PRIMITIVE_UNPACK_SEGMENT(ref.prim_type()),
dim,
pos,
left_bounds,
right_bounds);
}
void BVHSpatialSplit::split_point_reference(const BVHReference &ref,
const PointCloud *pointcloud,
int dim,
float pos,
BoundBox &left_bounds,
BoundBox &right_bounds)
{
split_point_primitive(pointcloud, NULL, ref.prim_index(), dim, pos, left_bounds, right_bounds);
}
void BVHSpatialSplit::split_object_reference(
const Object *object, int dim, float pos, BoundBox &left_bounds, BoundBox &right_bounds)
{
Geometry *geom = object->get_geometry();
if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
Mesh *mesh = static_cast<Mesh *>(geom);
for (int tri_idx = 0; tri_idx < mesh->num_triangles(); ++tri_idx) {
split_triangle_primitive(
mesh, &object->get_tfm(), tri_idx, dim, pos, left_bounds, right_bounds);
}
}
else if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
for (int curve_idx = 0; curve_idx < hair->num_curves(); ++curve_idx) {
Hair::Curve curve = hair->get_curve(curve_idx);
for (int segment_idx = 0; segment_idx < curve.num_keys - 1; ++segment_idx) {
split_curve_primitive(
hair, &object->get_tfm(), curve_idx, segment_idx, dim, pos, left_bounds, right_bounds);
}
}
}
else if (geom->geometry_type == Geometry::POINTCLOUD) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
for (int point_idx = 0; point_idx < pointcloud->num_points(); ++point_idx) {
split_point_primitive(
pointcloud, &object->get_tfm(), point_idx, dim, pos, left_bounds, right_bounds);
}
}
}
void BVHSpatialSplit::split_reference(const BVHBuild &builder,
BVHReference &left,
BVHReference &right,
const BVHReference &ref,
int dim,
float pos)
{
/* initialize boundboxes */
BoundBox left_bounds = BoundBox::empty;
BoundBox right_bounds = BoundBox::empty;
/* loop over vertices/edges. */
const Object *ob = builder.objects[ref.prim_object()];
if (ref.prim_type() & PRIMITIVE_ALL_TRIANGLE) {
Mesh *mesh = static_cast<Mesh *>(ob->get_geometry());
split_triangle_reference(ref, mesh, dim, pos, left_bounds, right_bounds);
}
else if (ref.prim_type() & PRIMITIVE_ALL_CURVE) {
Hair *hair = static_cast<Hair *>(ob->get_geometry());
split_curve_reference(ref, hair, dim, pos, left_bounds, right_bounds);
}
else if (ref.prim_type() & PRIMITIVE_ALL_POINT) {
PointCloud *pointcloud = static_cast<PointCloud *>(ob->get_geometry());
split_point_reference(ref, pointcloud, dim, pos, left_bounds, right_bounds);
}
else {
split_object_reference(ob, dim, pos, left_bounds, right_bounds);
}
/* intersect with original bounds. */
left_bounds.max[dim] = pos;
right_bounds.min[dim] = pos;
left_bounds.intersect(ref.bounds());
right_bounds.intersect(ref.bounds());
/* set references */
left = BVHReference(left_bounds, ref.prim_index(), ref.prim_object(), ref.prim_type());
right = BVHReference(right_bounds, ref.prim_index(), ref.prim_object(), ref.prim_type());
}
CCL_NAMESPACE_END