blender/intern/cycles/integrator/shader_eval.cpp
Brecht Van Lommel fd25e883e2 Cycles: remove prefix from source code file names
Remove prefix of filenames that is the same as the folder name. This used
to help when #includes were using individual files, but now they are always
relative to the cycles root directory and so the prefixes are redundant.

For patches and branches, git merge and rebase should be able to detect the
renames and move over code to the right file.
2021-10-26 15:37:04 +02:00

182 lines
5.5 KiB
C++

/*
* Copyright 2011-2021 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "integrator/shader_eval.h"
#include "device/device.h"
#include "device/queue.h"
#include "device/cpu/kernel.h"
#include "device/cpu/kernel_thread_globals.h"
#include "util/log.h"
#include "util/progress.h"
#include "util/tbb.h"
CCL_NAMESPACE_BEGIN
ShaderEval::ShaderEval(Device *device, Progress &progress) : device_(device), progress_(progress)
{
DCHECK_NE(device_, nullptr);
}
bool ShaderEval::eval(const ShaderEvalType type,
const int max_num_inputs,
const int num_channels,
const function<int(device_vector<KernelShaderEvalInput> &)> &fill_input,
const function<void(device_vector<float> &)> &read_output)
{
bool first_device = true;
bool success = true;
device_->foreach_device([&](Device *device) {
if (!first_device) {
LOG(ERROR) << "Multi-devices are not yet fully implemented, will evaluate shader on a "
"single device.";
return;
}
first_device = false;
device_vector<KernelShaderEvalInput> input(device, "ShaderEval input", MEM_READ_ONLY);
device_vector<float> output(device, "ShaderEval output", MEM_READ_WRITE);
/* Allocate and copy device buffers. */
DCHECK_EQ(input.device, device);
DCHECK_EQ(output.device, device);
DCHECK_LE(output.size(), input.size());
input.alloc(max_num_inputs);
int num_points = fill_input(input);
if (num_points == 0) {
return;
}
input.copy_to_device();
output.alloc(num_points * num_channels);
output.zero_to_device();
/* Evaluate on CPU or GPU. */
success = (device->info.type == DEVICE_CPU) ?
eval_cpu(device, type, input, output, num_points) :
eval_gpu(device, type, input, output, num_points);
/* Copy data back from device if not canceled. */
if (success) {
output.copy_from_device(0, 1, output.size());
read_output(output);
}
input.free();
output.free();
});
return success;
}
bool ShaderEval::eval_cpu(Device *device,
const ShaderEvalType type,
device_vector<KernelShaderEvalInput> &input,
device_vector<float> &output,
const int64_t work_size)
{
vector<CPUKernelThreadGlobals> kernel_thread_globals;
device->get_cpu_kernel_thread_globals(kernel_thread_globals);
/* Find required kernel function. */
const CPUKernels &kernels = *(device->get_cpu_kernels());
/* Simple parallel_for over all work items. */
KernelShaderEvalInput *input_data = input.data();
float *output_data = output.data();
bool success = true;
tbb::task_arena local_arena(device->info.cpu_threads);
local_arena.execute([&]() {
tbb::parallel_for(int64_t(0), work_size, [&](int64_t work_index) {
/* TODO: is this fast enough? */
if (progress_.get_cancel()) {
success = false;
return;
}
const int thread_index = tbb::this_task_arena::current_thread_index();
const KernelGlobalsCPU *kg = &kernel_thread_globals[thread_index];
switch (type) {
case SHADER_EVAL_DISPLACE:
kernels.shader_eval_displace(kg, input_data, output_data, work_index);
break;
case SHADER_EVAL_BACKGROUND:
kernels.shader_eval_background(kg, input_data, output_data, work_index);
break;
case SHADER_EVAL_CURVE_SHADOW_TRANSPARENCY:
kernels.shader_eval_curve_shadow_transparency(kg, input_data, output_data, work_index);
break;
}
});
});
return success;
}
bool ShaderEval::eval_gpu(Device *device,
const ShaderEvalType type,
device_vector<KernelShaderEvalInput> &input,
device_vector<float> &output,
const int64_t work_size)
{
/* Find required kernel function. */
DeviceKernel kernel;
switch (type) {
case SHADER_EVAL_DISPLACE:
kernel = DEVICE_KERNEL_SHADER_EVAL_DISPLACE;
break;
case SHADER_EVAL_BACKGROUND:
kernel = DEVICE_KERNEL_SHADER_EVAL_BACKGROUND;
break;
case SHADER_EVAL_CURVE_SHADOW_TRANSPARENCY:
kernel = DEVICE_KERNEL_SHADER_EVAL_CURVE_SHADOW_TRANSPARENCY;
break;
};
/* Create device queue. */
unique_ptr<DeviceQueue> queue = device->gpu_queue_create();
queue->init_execution();
/* Execute work on GPU in chunk, so we can cancel.
* TODO : query appropriate size from device.*/
const int64_t chunk_size = 65536;
void *d_input = (void *)input.device_pointer;
void *d_output = (void *)output.device_pointer;
for (int64_t d_offset = 0; d_offset < work_size; d_offset += chunk_size) {
int64_t d_work_size = std::min(chunk_size, work_size - d_offset);
void *args[] = {&d_input, &d_output, &d_offset, &d_work_size};
queue->enqueue(kernel, d_work_size, args);
queue->synchronize();
if (progress_.get_cancel()) {
return false;
}
}
return true;
}
CCL_NAMESPACE_END