blender/source/gameengine/Ketsji/KX_ObjectActuator.cpp

651 lines
20 KiB
C++

/**
* Do translation/rotation actions
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "KX_ObjectActuator.h"
#include "KX_GameObject.h"
#include "KX_IPhysicsController.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_ObjectActuator::
KX_ObjectActuator(
SCA_IObject* gameobj,
const MT_Vector3& force,
const MT_Vector3& torque,
const MT_Vector3& dloc,
const MT_Vector3& drot,
const MT_Vector3& linV,
const MT_Vector3& angV,
const short damping,
const KX_LocalFlags& flag,
PyTypeObject* T
) :
SCA_IActuator(gameobj,T),
m_force(force),
m_torque(torque),
m_dloc(dloc),
m_drot(drot),
m_linear_velocity(linV),
m_angular_velocity(angV),
m_linear_length2(0.0),
m_current_linear_factor(0.0),
m_current_angular_factor(0.0),
m_damping(damping),
m_bitLocalFlag (flag),
m_active_combined_velocity (false),
m_linear_damping_active(false),
m_angular_damping_active(false),
m_error_accumulator(0.0,0.0,0.0),
m_previous_error(0.0,0.0,0.0)
{
if (m_bitLocalFlag.ServoControl)
{
// in servo motion, the force is local if the target velocity is local
m_bitLocalFlag.Force = m_bitLocalFlag.LinearVelocity;
}
UpdateFuzzyFlags();
}
bool KX_ObjectActuator::Update()
{
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent());
if (bNegativeEvent) {
// If we previously set the linear velocity we now have to inform
// the physics controller that we no longer wish to apply it and that
// it should reconcile the externally set velocity with it's
// own velocity.
if (m_active_combined_velocity) {
if (parent)
parent->ResolveCombinedVelocities(
m_linear_velocity,
m_angular_velocity,
(m_bitLocalFlag.LinearVelocity) != 0,
(m_bitLocalFlag.AngularVelocity) != 0
);
m_active_combined_velocity = false;
}
m_linear_damping_active = false;
m_angular_damping_active = false;
m_error_accumulator.setValue(0.0,0.0,0.0);
m_previous_error.setValue(0.0,0.0,0.0);
return false;
} else if (parent)
{
if (m_bitLocalFlag.ServoControl)
{
// In this mode, we try to reach a target speed using force
// As we don't know the friction, we must implement a generic
// servo control to achieve the speed in a configurable
// v = current velocity
// V = target velocity
// e = V-v = speed error
// dt = time interval since previous update
// I = sum(e(t)*dt)
// dv = e(t) - e(t-1)
// KP, KD, KI : coefficient
// F = KP*e+KI*I+KD*dv
MT_Scalar mass = parent->GetMass();
if (mass < MT_EPSILON)
return false;
MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
MT_Vector3 e = m_linear_velocity - v;
MT_Vector3 dv = e - m_previous_error;
MT_Vector3 I = m_error_accumulator + e;
m_force = m_torque.x()*e+m_torque.y()*I+m_torque.z()*dv;
// to automatically adapt the PID coefficient to mass;
m_force *= mass;
if (m_bitLocalFlag.Torque)
{
if (m_force[0] > m_dloc[0])
{
m_force[0] = m_dloc[0];
I[0] = m_error_accumulator[0];
} else if (m_force[0] < m_drot[0])
{
m_force[0] = m_drot[0];
I[0] = m_error_accumulator[0];
}
}
if (m_bitLocalFlag.DLoc)
{
if (m_force[1] > m_dloc[1])
{
m_force[1] = m_dloc[1];
I[1] = m_error_accumulator[1];
} else if (m_force[1] < m_drot[1])
{
m_force[1] = m_drot[1];
I[1] = m_error_accumulator[1];
}
}
if (m_bitLocalFlag.DRot)
{
if (m_force[2] > m_dloc[2])
{
m_force[2] = m_dloc[2];
I[2] = m_error_accumulator[2];
} else if (m_force[2] < m_drot[2])
{
m_force[2] = m_drot[2];
I[2] = m_error_accumulator[2];
}
}
m_previous_error = e;
m_error_accumulator = I;
parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0);
} else
{
if (!m_bitLocalFlag.ZeroForce)
{
parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0);
}
if (!m_bitLocalFlag.ZeroTorque)
{
parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0);
}
if (!m_bitLocalFlag.ZeroDLoc)
{
parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0);
}
if (!m_bitLocalFlag.ZeroDRot)
{
parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
}
if (!m_bitLocalFlag.ZeroLinearVelocity)
{
if (m_bitLocalFlag.AddOrSetLinV) {
parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
} else {
m_active_combined_velocity = true;
if (m_damping > 0) {
MT_Vector3 linV;
if (!m_linear_damping_active) {
// delta and the start speed (depends on the existing speed in that direction)
linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
// keep only the projection along the desired direction
m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2;
m_linear_damping_active = true;
}
if (m_current_linear_factor < 1.0)
m_current_linear_factor += 1.0/m_damping;
if (m_current_linear_factor > 1.0)
m_current_linear_factor = 1.0;
linV = m_current_linear_factor * m_linear_velocity;
parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0);
} else {
parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
}
}
}
if (!m_bitLocalFlag.ZeroAngularVelocity)
{
m_active_combined_velocity = true;
if (m_damping > 0) {
MT_Vector3 angV;
if (!m_angular_damping_active) {
// delta and the start speed (depends on the existing speed in that direction)
angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity);
// keep only the projection along the desired direction
m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2;
m_angular_damping_active = true;
}
if (m_current_angular_factor < 1.0)
m_current_angular_factor += 1.0/m_damping;
if (m_current_angular_factor > 1.0)
m_current_angular_factor = 1.0;
angV = m_current_angular_factor * m_angular_velocity;
parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0);
} else {
parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0);
}
}
}
}
return true;
}
CValue* KX_ObjectActuator::GetReplica()
{
KX_ObjectActuator* replica = new KX_ObjectActuator(*this);//m_float,GetName());
replica->ProcessReplica();
// this will copy properties and so on...
CValue::AddDataToReplica(replica);
return replica;
}
/* some 'standard' utilities... */
bool KX_ObjectActuator::isValid(KX_ObjectActuator::KX_OBJECT_ACT_VEC_TYPE type)
{
bool res = false;
res = (type > KX_OBJECT_ACT_NODEF) && (type < KX_OBJECT_ACT_MAX);
return res;
}
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_ObjectActuator::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_ObjectActuator",
sizeof(KX_ObjectActuator),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_ObjectActuator::Parents[] = {
&KX_ObjectActuator::Type,
&SCA_IActuator::Type,
&SCA_ILogicBrick::Type,
&CValue::Type,
NULL
};
PyMethodDef KX_ObjectActuator::Methods[] = {
{"getForce", (PyCFunction) KX_ObjectActuator::sPyGetForce, METH_NOARGS},
{"setForce", (PyCFunction) KX_ObjectActuator::sPySetForce, METH_VARARGS},
{"getTorque", (PyCFunction) KX_ObjectActuator::sPyGetTorque, METH_NOARGS},
{"setTorque", (PyCFunction) KX_ObjectActuator::sPySetTorque, METH_VARARGS},
{"getDLoc", (PyCFunction) KX_ObjectActuator::sPyGetDLoc, METH_NOARGS},
{"setDLoc", (PyCFunction) KX_ObjectActuator::sPySetDLoc, METH_VARARGS},
{"getDRot", (PyCFunction) KX_ObjectActuator::sPyGetDRot, METH_NOARGS},
{"setDRot", (PyCFunction) KX_ObjectActuator::sPySetDRot, METH_VARARGS},
{"getLinearVelocity", (PyCFunction) KX_ObjectActuator::sPyGetLinearVelocity, METH_NOARGS},
{"setLinearVelocity", (PyCFunction) KX_ObjectActuator::sPySetLinearVelocity, METH_VARARGS},
{"getAngularVelocity", (PyCFunction) KX_ObjectActuator::sPyGetAngularVelocity, METH_NOARGS},
{"setAngularVelocity", (PyCFunction) KX_ObjectActuator::sPySetAngularVelocity, METH_VARARGS},
{"setDamping", (PyCFunction) KX_ObjectActuator::sPySetDamping, METH_VARARGS},
{"getDamping", (PyCFunction) KX_ObjectActuator::sPyGetDamping, METH_NOARGS},
{"setForceLimitX", (PyCFunction) KX_ObjectActuator::sPySetForceLimitX, METH_VARARGS},
{"getForceLimitX", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitX, METH_NOARGS},
{"setForceLimitY", (PyCFunction) KX_ObjectActuator::sPySetForceLimitY, METH_VARARGS},
{"getForceLimitY", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitY, METH_NOARGS},
{"setForceLimitZ", (PyCFunction) KX_ObjectActuator::sPySetForceLimitZ, METH_VARARGS},
{"getForceLimitZ", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitZ, METH_NOARGS},
{"setPID", (PyCFunction) KX_ObjectActuator::sPyGetPID, METH_NOARGS},
{"getPID", (PyCFunction) KX_ObjectActuator::sPySetPID, METH_VARARGS},
{NULL,NULL} //Sentinel
};
PyObject* KX_ObjectActuator::_getattr(const STR_String& attr) {
_getattr_up(SCA_IActuator);
};
/* 1. set ------------------------------------------------------------------ */
/* Removed! */
/* 2. getForce */
PyObject* KX_ObjectActuator::PyGetForce(PyObject* self)
{
PyObject *retVal = PyList_New(4);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_force[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_force[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_force[2]));
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.Force));
return retVal;
}
/* 3. setForce */
PyObject* KX_ObjectActuator::PySetForce(PyObject* self,
PyObject* args,
PyObject* kwds)
{
float vecArg[3];
int bToggle = 0;
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
&vecArg[2], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_force.setValue(vecArg);
m_bitLocalFlag.Force = PyArgToBool(bToggle);
UpdateFuzzyFlags();
Py_Return;
}
/* 4. getTorque */
PyObject* KX_ObjectActuator::PyGetTorque(PyObject* self)
{
PyObject *retVal = PyList_New(4);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_torque[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_torque[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_torque[2]));
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.Torque));
return retVal;
}
/* 5. setTorque */
PyObject* KX_ObjectActuator::PySetTorque(PyObject* self,
PyObject* args,
PyObject* kwds)
{
float vecArg[3];
int bToggle = 0;
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
&vecArg[2], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_torque.setValue(vecArg);
m_bitLocalFlag.Torque = PyArgToBool(bToggle);
UpdateFuzzyFlags();
Py_Return;
}
/* 6. getDLoc */
PyObject* KX_ObjectActuator::PyGetDLoc(PyObject* self)
{
PyObject *retVal = PyList_New(4);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_dloc[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_dloc[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_dloc[2]));
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.DLoc));
return retVal;
}
/* 7. setDLoc */
PyObject* KX_ObjectActuator::PySetDLoc(PyObject* self,
PyObject* args,
PyObject* kwds)
{
float vecArg[3];
int bToggle = 0;
if(!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
&vecArg[2], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_dloc.setValue(vecArg);
m_bitLocalFlag.DLoc = PyArgToBool(bToggle);
UpdateFuzzyFlags();
Py_Return;
}
/* 8. getDRot */
PyObject* KX_ObjectActuator::PyGetDRot(PyObject* self)
{
PyObject *retVal = PyList_New(4);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_drot[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_drot[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_drot[2]));
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.DRot));
return retVal;
}
/* 9. setDRot */
PyObject* KX_ObjectActuator::PySetDRot(PyObject* self,
PyObject* args,
PyObject* kwds)
{
float vecArg[3];
int bToggle = 0;
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
&vecArg[2], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_drot.setValue(vecArg);
m_bitLocalFlag.DRot = PyArgToBool(bToggle);
UpdateFuzzyFlags();
Py_Return;
}
/* 10. getLinearVelocity */
PyObject* KX_ObjectActuator::PyGetLinearVelocity(PyObject* self) {
PyObject *retVal = PyList_New(4);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_linear_velocity[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_linear_velocity[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_linear_velocity[2]));
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.LinearVelocity));
return retVal;
}
/* 11. setLinearVelocity */
PyObject* KX_ObjectActuator::PySetLinearVelocity(PyObject* self,
PyObject* args,
PyObject* kwds) {
float vecArg[3];
int bToggle = 0;
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
&vecArg[2], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_linear_velocity.setValue(vecArg);
m_bitLocalFlag.LinearVelocity = PyArgToBool(bToggle);
UpdateFuzzyFlags();
Py_Return;
}
/* 12. getAngularVelocity */
PyObject* KX_ObjectActuator::PyGetAngularVelocity(PyObject* self) {
PyObject *retVal = PyList_New(4);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_angular_velocity[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_angular_velocity[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_angular_velocity[2]));
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.AngularVelocity));
return retVal;
}
/* 13. setAngularVelocity */
PyObject* KX_ObjectActuator::PySetAngularVelocity(PyObject* self,
PyObject* args,
PyObject* kwds) {
float vecArg[3];
int bToggle = 0;
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
&vecArg[2], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_angular_velocity.setValue(vecArg);
m_bitLocalFlag.AngularVelocity = PyArgToBool(bToggle);
UpdateFuzzyFlags();
Py_Return;
}
/* 13. setDamping */
PyObject* KX_ObjectActuator::PySetDamping(PyObject* self,
PyObject* args,
PyObject* kwds) {
int damping = 0;
if (!PyArg_ParseTuple(args, "i", &damping) || damping < 0 || damping > 1000) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_damping = damping;
Py_Return;
}
/* 13. getVelocityDamping */
PyObject* KX_ObjectActuator::PyGetDamping(PyObject* self) {
return Py_BuildValue("i",m_damping);
}
/* 6. getForceLimitX */
PyObject* KX_ObjectActuator::PyGetForceLimitX(PyObject* self)
{
PyObject *retVal = PyList_New(3);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_drot[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_dloc[0]));
PyList_SetItem(retVal, 2, BoolToPyArg(m_bitLocalFlag.Torque));
return retVal;
}
/* 7. setForceLimitX */
PyObject* KX_ObjectActuator::PySetForceLimitX(PyObject* self,
PyObject* args,
PyObject* kwds)
{
float vecArg[2];
int bToggle = 0;
if(!PyArg_ParseTuple(args, "ffi", &vecArg[0], &vecArg[1], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_drot[0] = vecArg[0];
m_dloc[0] = vecArg[1];
m_bitLocalFlag.Torque = PyArgToBool(bToggle);
Py_Return;
}
/* 6. getForceLimitY */
PyObject* KX_ObjectActuator::PyGetForceLimitY(PyObject* self)
{
PyObject *retVal = PyList_New(3);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_drot[1]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_dloc[1]));
PyList_SetItem(retVal, 2, BoolToPyArg(m_bitLocalFlag.DLoc));
return retVal;
}
/* 7. setForceLimitY */
PyObject* KX_ObjectActuator::PySetForceLimitY(PyObject* self,
PyObject* args,
PyObject* kwds)
{
float vecArg[2];
int bToggle = 0;
if(!PyArg_ParseTuple(args, "ffi", &vecArg[0], &vecArg[1], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_drot[1] = vecArg[0];
m_dloc[1] = vecArg[1];
m_bitLocalFlag.DLoc = PyArgToBool(bToggle);
Py_Return;
}
/* 6. getForceLimitZ */
PyObject* KX_ObjectActuator::PyGetForceLimitZ(PyObject* self)
{
PyObject *retVal = PyList_New(3);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_drot[2]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_dloc[2]));
PyList_SetItem(retVal, 2, BoolToPyArg(m_bitLocalFlag.DRot));
return retVal;
}
/* 7. setForceLimitZ */
PyObject* KX_ObjectActuator::PySetForceLimitZ(PyObject* self,
PyObject* args,
PyObject* kwds)
{
float vecArg[2];
int bToggle = 0;
if(!PyArg_ParseTuple(args, "ffi", &vecArg[0], &vecArg[1], &bToggle)) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_drot[2] = vecArg[0];
m_dloc[2] = vecArg[1];
m_bitLocalFlag.DRot = PyArgToBool(bToggle);
Py_Return;
}
/* 4. getPID */
PyObject* KX_ObjectActuator::PyGetPID(PyObject* self)
{
PyObject *retVal = PyList_New(3);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_torque[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_torque[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_torque[2]));
return retVal;
}
/* 5. setPID */
PyObject* KX_ObjectActuator::PySetPID(PyObject* self,
PyObject* args,
PyObject* kwds)
{
float vecArg[3];
if (!PyArg_ParseTuple(args, "fff", &vecArg[0], &vecArg[1], &vecArg[2])) {
PyErr_SetString(PyExc_TypeError, "Invalid arguments");
return NULL;
}
m_torque.setValue(vecArg);
Py_Return;
}
/* eof */